IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2557-d359798.html
   My bibliography  Save this article

Assessment of Offshore Wind Power Potential along the Brazilian Coast

Author

Listed:
  • Sylvester Stallone Pereira de Azevedo

    (Natal Central Campus, Federal Institute of Education, Science and Technology of Rio Grande do Norte (IFRN), 1692, Tirol, Natal, RN 59015-300, Brazil
    Energy Planning Program, Graduate School of Engineering, Federal University of Rio de Janeiro, Technology Center, Block C, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ 21941-972, Brazil)

  • Amaro Olimpio Pereira Junior

    (Energy Planning Program, Graduate School of Engineering, Federal University of Rio de Janeiro, Technology Center, Block C, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ 21941-972, Brazil)

  • Neilton Fidelis da Silva

    (Natal Central Campus, Federal Institute of Education, Science and Technology of Rio Grande do Norte (IFRN), 1692, Tirol, Natal, RN 59015-300, Brazil
    International Virtual Institute of Global Change (IVIG), Rio de Janeiro, RJ 21941-909, Brazil)

  • Renato Samuel Barbosa de Araújo

    (Natal Central Campus, Federal Institute of Education, Science and Technology of Rio Grande do Norte (IFRN), 1692, Tirol, Natal, RN 59015-300, Brazil)

  • Antonio Aldísio Carlos Júnior

    (Graduate Program in Soil and Water Handling, Semiarid Federal Rural University, 572, Costa e Silva, Mossoró, RN 59625-900, Brazil)

Abstract

Brazilian offshore potential exploration is still in its early stages, with no single offshore park in operation or being implemented. Unlike the already identified onshore wind potential—with over 14 GW installed in the form of onshore wind turbines—offshore wind potential research is absent and restricted to limited areas. In this context, this study aims to identify offshore wind potential throughout the Brazilian coast for electricity generation. The research method took into account the average annual wind velocity records as 100 m/s, as well as bathymetry and the distance from the coast baseline, to classify areas displaying the greatest potential, applying an analytic hierarchy process (AHP) to the geographic information system for the identification of potential offshore wind energy exploration sites. Environmental conservation units were considered exclusion areas. The installable capacity using aerogenerators was estimated at 3 TW, while an annual average power production of 14,800 TWh was calculated for the sum of the viable areas. These results demonstrate that the wind potential identified throughout the Brazilian coast provides the conditions for significant energy sector development. To this end, it is necessary to establish an ecological economic zoning of the areas displaying the greatest potential identified herein for the beginning of offshore exploration in Brazil.

Suggested Citation

  • Sylvester Stallone Pereira de Azevedo & Amaro Olimpio Pereira Junior & Neilton Fidelis da Silva & Renato Samuel Barbosa de Araújo & Antonio Aldísio Carlos Júnior, 2020. "Assessment of Offshore Wind Power Potential along the Brazilian Coast," Energies, MDPI, vol. 13(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2557-:d:359798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2557/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2557/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2019. "Global levelised cost of electricity from offshore wind," Energy, Elsevier, vol. 189(C).
    2. Dhanju, Amardeep & Whitaker, Phillip & Kempton, Willett, 2008. "Assessing offshore wind resources: An accessible methodology," Renewable Energy, Elsevier, vol. 33(1), pages 55-64.
    3. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    4. Adelaja, Adesoji & McKeown, Charles & Calnin, Benjamin & Hailu, Yohannes, 2012. "Assessing offshore wind potential," Energy Policy, Elsevier, vol. 42(C), pages 191-200.
    5. Pimenta, Felipe & Kempton, Willett & Garvine, Richard, 2008. "Combining meteorological stations and satellite data to evaluate the offshore wind power resource of Southeastern Brazil," Renewable Energy, Elsevier, vol. 33(11), pages 2375-2387.
    6. Heptonstall, Philip & Gross, Robert & Greenacre, Philip & Cockerill, Tim, 2012. "The cost of offshore wind: Understanding the past and projecting the future," Energy Policy, Elsevier, vol. 41(C), pages 815-821.
    7. Latinopoulos, D. & Kechagia, K., 2015. "A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece," Renewable Energy, Elsevier, vol. 78(C), pages 550-560.
    8. Ramírez-Rosado, Ignacio J. & García-Garrido, Eduardo & Fernández-Jiménez, L. Alfredo & Zorzano-Santamaría, Pedro J. & Monteiro, Cláudio & Miranda, Vladimiro, 2008. "Promotion of new wind farms based on a decision support system," Renewable Energy, Elsevier, vol. 33(4), pages 558-566.
    9. Waewsak, Jompob & Landry, Mathieu & Gagnon, Yves, 2015. "Offshore wind power potential of the Gulf of Thailand," Renewable Energy, Elsevier, vol. 81(C), pages 609-626.
    10. Esteban, M. Dolores & Diez, J. Javier & López, Jose S. & Negro, Vicente, 2011. "Why offshore wind energy?," Renewable Energy, Elsevier, vol. 36(2), pages 444-450.
    11. Baban, Serwan M.J & Parry, Tim, 2001. "Developing and applying a GIS-assisted approach to locating wind farms in the UK," Renewable Energy, Elsevier, vol. 24(1), pages 59-71.
    12. Mahdy, Mostafa & Bahaj, AbuBakr S., 2018. "Multi criteria decision analysis for offshore wind energy potential in Egypt," Renewable Energy, Elsevier, vol. 118(C), pages 278-289.
    13. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fábio Ricardo Procópio de Araújo & Marcio Giannini Pereira & Marcos Aurélio Vasconcelos Freitas & Neilton Fidelis da Silva & Eduardo Janser de Azevedo Dantas, 2021. "Bigger Is Not Always Better: Review of Small Wind in Brazil," Energies, MDPI, vol. 14(4), pages 1-26, February.
    2. Erika Carvalho Nogueira & Rafael Cancella Morais & Amaro Olimpio Pereira, 2023. "Offshore Wind Power Potential in Brazil: Complementarity and Synergies," Energies, MDPI, vol. 16(16), pages 1-18, August.
    3. Ivana Racetin & Nives Ostojić Škomrlj & Marina Peko & Mladen Zrinjski, 2023. "Fuzzy Multi-Criteria Decision for Geoinformation System-Based Offshore Wind Farm Positioning in Croatia," Energies, MDPI, vol. 16(13), pages 1-18, June.
    4. Arcilan T. Assireu & Felipe M. Pimenta & Ramon M. de Freitas & Osvaldo R. Saavedra & Francisco L. A. Neto & Audálio R. Torres Júnior & Clóvis B. M. Oliveira & Denivaldo C. P. Lopes & Shigeaki L. de Li, 2022. "EOSOLAR Project: Assessment of Wind Resources of a Coastal Equatorial Region of Brazil—Overview and Preliminary Results," Energies, MDPI, vol. 15(7), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vinhoza, Amanda & Schaeffer, Roberto, 2021. "Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    2. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    3. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    4. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    5. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    6. Cunden, Tyagaraja S.M. & Doorga, Jay & Lollchund, Michel R. & Rughooputh, Soonil D.D.V., 2020. "Multi-level constraints wind farms siting for a complex terrain in a tropical region using MCDM approach coupled with GIS," Energy, Elsevier, vol. 211(C).
    7. Alami Merrouni, Ahmed & Elwali Elalaoui, Fakhreddine & Mezrhab, Ahmed & Mezrhab, Abdelhamid & Ghennioui, Abdellatif, 2018. "Large scale PV sites selection by combining GIS and Analytical Hierarchy Process. Case study: Eastern Morocco," Renewable Energy, Elsevier, vol. 119(C), pages 863-873.
    8. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    9. Asadi, Meysam & Pourhossein, Kazem, 2021. "Wind farm site selection considering turbulence intensity," Energy, Elsevier, vol. 236(C).
    10. Mekonnen, Addisu D. & Gorsevski, Pece V., 2015. "A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 162-177.
    11. Peri, Erez & Tal, Alon, 2020. "A sustainable way forward for wind power: Assessing turbines’ environmental impacts using a holistic GIS analysis," Applied Energy, Elsevier, vol. 279(C).
    12. Mahdy, Mostafa & Bahaj, AbuBakr S., 2018. "Multi criteria decision analysis for offshore wind energy potential in Egypt," Renewable Energy, Elsevier, vol. 118(C), pages 278-289.
    13. Waewsak, Jompob & Ali, Shahid & Natee, Warut & Kongruang, Chuleerat & Chancham, Chana & Gagnon, Yves, 2020. "Assessment of hybrid, firm renewable energy-based power plants: Application in the southernmost region of Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    14. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    15. Mohammed Ifkirne & Houssam El Bouhi & Siham Acharki & Quoc Bao Pham & Abdelouahed Farah & Nguyen Thi Thuy Linh, 2022. "Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France," Land, MDPI, vol. 11(10), pages 1-26, October.
    16. Baseer, M.A. & Rehman, S. & Meyer, J.P. & Alam, Md. Mahbub, 2017. "GIS-based site suitability analysis for wind farm development in Saudi Arabia," Energy, Elsevier, vol. 141(C), pages 1166-1176.
    17. Dhunny, A.Z. & Timmons, D.S. & Allam, Z. & Lollchund, M.R. & Cunden, T.S.M., 2020. "An economic assessment of near-shore wind farm development using a weather research forecast-based genetic algorithm model," Energy, Elsevier, vol. 201(C).
    18. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    19. Rogna, Marco, 2020. "A first-phase screening method for site selection of large-scale solar plants with an application to Italy," Land Use Policy, Elsevier, vol. 99(C).
    20. Pilar Díaz-Cuevas, 2018. "GIS-Based Methodology for Evaluating the Wind-Energy Potential of Territories: A Case Study from Andalusia (Spain)," Energies, MDPI, vol. 11(10), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2557-:d:359798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.