IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2439-d357283.html
   My bibliography  Save this article

A Novel Protection Scheme for Solar Photovoltaic Generator Connected Networks Using Hybrid Harmony Search Algorithm-Bollinger Bands Approach

Author

Listed:
  • Vipul N. Rajput

    (Department of Electrical Engineering, Dr. Jivraj Mehta Institute of Technology, Anand 388340, India)

  • Kartik S. Pandya

    (Department of Electrical Engineering, Charotar University of Science and Technology, Changa 388421, India)

  • Junhee Hong

    (Department of Energy IT, Gachon University, Seongnam 13120, Korea)

  • Zong Woo Geem

    (Department of Energy IT, Gachon University, Seongnam 13120, Korea)

Abstract

This paper introduces a new protection system for solar photovoltaic generator (SPVG)-connected networks. The system is a combination of voltage-restrained overcurrent relays (VROCRs) and directional overcurrent relays (DOCRs). The DOCRs are implemented to sense high fault current on the grid side, and VROCRs are deployed to sense low fault current supplied by the SPVG. Furthermore, a novel challenge for the optimal coordination of DOCRs-DOCRs and DOCRs-VROCRs is formulated. Due to the inclusion of additional constraints of VROCR, the relay coordination problem becomes more complicated. To solve this complex problem, a hybrid Harmony Search Algorithm-Bollinger Bands (HSA-BB) method is proposed. Also, the lower and upper bands in BB are dynamically adjusted with the generation number to assist the HSA in the exploration and exploitation stages. The proposed method is implemented on three different SPVG-connected networks. To exhibit the effectiveness of the proposed method, the obtained results are compared with the genetic algorithm (GA), particle swarm optimization (PSO), cuckoo search algorithm (CSA), HSA and hybrid GA-nonlinear programming (GA-NLP) method. Also, the superiority of the proposed method is evaluated using descriptive and nonparametric statistical tests.

Suggested Citation

  • Vipul N. Rajput & Kartik S. Pandya & Junhee Hong & Zong Woo Geem, 2020. "A Novel Protection Scheme for Solar Photovoltaic Generator Connected Networks Using Hybrid Harmony Search Algorithm-Bollinger Bands Approach," Energies, MDPI, vol. 13(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2439-:d:357283
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2439/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2439/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jakub Ehrenberger & Jan Švec, 2017. "Directional Overcurrent Relays Coordination Problems in Distributed Generation Systems," Energies, MDPI, vol. 10(10), pages 1-17, September.
    2. Cagnano, A. & De Tuglie, E. & Mancarella, P., 2020. "Microgrids: Overview and guidelines for practical implementations and operation," Applied Energy, Elsevier, vol. 258(C).
    3. Hasan Can Kılıçkıran & Hüseyin Akdemir & İbrahim Şengör & Bedri Kekezoğlu & Nikolaos G. Paterakis, 2018. "A Non-Standard Characteristic Based Protection Scheme for Distribution Networks," Energies, MDPI, vol. 11(5), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Kolková & Aleksandr Kljuènikov, 2021. "Demand forecasting: an alternative approach based on technical indicator Pbands," Oeconomia Copernicana, Institute of Economic Research, vol. 12(4), pages 1063-1094, December.
    2. Silvano Vergura, 2020. "Bollinger Bands Based on Exponential Moving Average for Statistical Monitoring of Multi-Array Photovoltaic Systems," Energies, MDPI, vol. 13(15), pages 1-14, August.
    3. Dipu Sarkar & Sagar Kudkelwar, 2021. "Optimal over current relay coordination in Microgrid using a novel hybrid Water Cycle-Moth Flame algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(3), pages 553-564, June.
    4. Feras Alasali & Abdelaziz Salah Saidi & Naser El-Naily & Mahmoud A. Smadi & William Holderbaum, 2023. "Hybrid Tripping Characteristic-Based Protection Coordination Scheme for Photovoltaic Power Systems," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    5. Aayush Shrivastava & Abhishek Sharma & Manjaree Pandit & Vibhu Jately & Brian Azzopardi, 2021. "Hybrid Protection Scheme Based Optimal Overcurrent Relay Coordination Strategy for RE Integrated Power Distribution Grid," Energies, MDPI, vol. 14(21), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    2. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    3. Abdul K Hamid & Nsilulu T Mbungu & A. Elnady & Ramesh C Bansal & Ali A Ismail & Mohammad A AlShabi, 2023. "A systematic review of grid-connected photovoltaic and photovoltaic/thermal systems: Benefits, challenges and mitigation," Energy & Environment, , vol. 34(7), pages 2775-2814, November.
    4. Faisal Mumtaz & Kashif Imran & Abdullah Abusorrah & Syed Basit Ali Bukhari, 2022. "Harmonic Content-Based Protection Method for Microgrids via 1-Dimensional Recursive Median Filtering Algorithm," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    5. Ruben Hidalgo-Leon & Fernando Amoroso & Javier Urquizo & Viviana Villavicencio & Miguel Torres & Pritpal Singh & Guillermo Soriano, 2022. "Feasibility Study for Off-Grid Hybrid Power Systems Considering an Energy Efficiency Initiative for an Island in Ecuador," Energies, MDPI, vol. 15(5), pages 1-25, February.
    6. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Guodong Liu & Maximiliano F. Ferrari & Thomas B. Ollis & Kevin Tomsovic, 2022. "An MILP-Based Distributed Energy Management for Coordination of Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-20, September.
    8. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    9. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    10. Alejandra Tabares & Pablo Cortés, 2024. "Using Stochastic Dual Dynamic Programming to Solve the Multi-Stage Energy Management Problem in Microgrids," Energies, MDPI, vol. 17(11), pages 1-24, May.
    11. Vera, Enrique Gabriel & Cañizares, Claudio & Pirnia, Mehrdad, 2023. "Geographic-information-based stochastic optimization model for multi-microgrid planning," Applied Energy, Elsevier, vol. 340(C).
    12. Gerardo Humberto Valencia-Rivera & Ivan Amaya & Jorge M. Cruz-Duarte & José Carlos Ortíz-Bayliss & Juan Gabriel Avina-Cervantes, 2021. "Hybrid Controller Based on LQR Applied to Interleaved Boost Converter and Microgrids under Power Quality Events," Energies, MDPI, vol. 14(21), pages 1-31, October.
    13. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    14. Krzysztof Lowczowski & Jozef Lorenc & Jozef Zawodniak & Grzegorz Dombek, 2020. "Detection and Location of Earth Fault in MV Feeders Using Screen Earthing Current Measurements," Energies, MDPI, vol. 13(5), pages 1-24, March.
    15. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    16. Oh, Jinwoo & Jeong, Hoyoung & Lee, Hoseong, 2021. "Experimental and numerical analysis on low-temperature off-design organic Rankine cycle in perspective of mass conservation," Energy, Elsevier, vol. 234(C).
    17. Hirwa, Jusse & Zolan, Alexander & Becker, William & Flamand, Tülay & Newman, Alexandra, 2023. "Optimizing design and dispatch of a resilient renewable energy microgrid for a South African hospital," Applied Energy, Elsevier, vol. 348(C).
    18. Isaías González & Antonio José Calderón & José María Portalo, 2021. "Innovative Multi-Layered Architecture for Heterogeneous Automation and Monitoring Systems: Application Case of a Photovoltaic Smart Microgrid," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    19. Jiexing Wan & Wei Hua & Baoan Wang, 2022. "A Unified Inner Current Control Strategy Based on the 2-DOF Theory for a Multifunctional Cascade Converter in an Integrated Microgrid System," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    20. Li, Shenglin & Zhu, Jizhong & Dong, Hanjiang & Zhu, Haohao & Fan, Junwei, 2022. "A novel rolling optimization strategy considering grid-connected power fluctuations smoothing for renewable energy microgrids," Applied Energy, Elsevier, vol. 309(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2439-:d:357283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.