IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p145-d302598.html
   My bibliography  Save this article

Characterization of Effective In-Plane Electrical Resistivity of a Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells through Freeze–Thaw Thermal Cycles

Author

Listed:
  • Yanqin Chen

    (Department of Mechanical Engineering, Inha University, Incheon 22212, Korea)

  • Chao Jiang

    (Department of Mechanical Engineering, Inha University, Incheon 22212, Korea)

  • Chongdu Cho

    (Department of Mechanical Engineering, Inha University, Incheon 22212, Korea)

Abstract

The electrical property of gas diffusion layers (GDLs) plays a significant role in influencing the overall performance of polymer electrolyte membrane fuel cells (PEMFCs). The electrical degradation performance of GDLs has not been reported sufficiently. Understanding the electrical degradation characteristics of GDLs is vital to better fuel cell performance, higher efficiency, and longer service time. This paper investigated the effective in-plane electrical resistivity of a commercial GDL by considering environmental and assembly conditions similar to those in use for the operation of PEMFCs. The effective in-plane electrical resistivity of the GDL, subjected to a series of freeze–thaw thermal cycles, was characterized to study its progressive electrical degradation with thermal cycles. Experimental results indicated that, under low compressive loads, the effective in-plane electrical resistivity of the commercial GDL showed weak anisotropy, and was greatly influenced by the transformation of carbon fiber connection in the porous layer. In particular, the thermal aging treatment on the GDL through the first 100 freeze–thaw cycles contributed a lot to its in-plane electrical degradation performance.

Suggested Citation

  • Yanqin Chen & Chao Jiang & Chongdu Cho, 2019. "Characterization of Effective In-Plane Electrical Resistivity of a Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells through Freeze–Thaw Thermal Cycles," Energies, MDPI, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:145-:d:302598
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/145/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/145/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Movahedi, M. & Ramiar, A. & Ranjber, A.A., 2018. "3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field," Energy, Elsevier, vol. 142(C), pages 617-632.
    2. Ismail, M.S. & Hughes, K.J. & Ingham, D.B. & Ma, L. & Pourkashanian, M., 2012. "Effects of anisotropic permeability and electrical conductivity of gas diffusion layers on the performance of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 95(C), pages 50-63.
    3. Reza Omrani & Bahman Shabani, 2019. "Gas Diffusion Layers in Fuel Cells and Electrolysers: A Novel Semi-Empirical Model to Predict Electrical Conductivity of Sintered Metal Fibres," Energies, MDPI, vol. 12(5), pages 1-17, March.
    4. Zamel, Nada & Li, Xianguo & Shen, Jun, 2012. "Numerical estimation of the effective electrical conductivity in carbon paper diffusion media," Applied Energy, Elsevier, vol. 93(C), pages 39-44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olivier Bethoux, 2020. "Hydrogen Fuel Cell Road Vehicles: State of the Art and Perspectives," Energies, MDPI, vol. 13(21), pages 1-28, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Xiaohui & Lin, Chen & Zheng, Zhifeng & Chen, Junren & Wei, Guanghua & Zhang, Junliang, 2020. "Effect of clamping pressure on liquid-cooled PEMFC stack performance considering inhomogeneous gas diffusion layer compression," Applied Energy, Elsevier, vol. 258(C).
    2. Cao, Tao-Feng & Lin, Hong & Chen, Li & He, Ya-Ling & Tao, Wen-Quan, 2013. "Numerical investigation of the coupled water and thermal management in PEM fuel cell," Applied Energy, Elsevier, vol. 112(C), pages 1115-1125.
    3. Ye, Lingfeng & Qiu, Diankai & Peng, Linfa & Lai, Xinmin, 2022. "Microstructures and electrical conductivity properties of compressed gas diffusion layers using X-ray tomography," Applied Energy, Elsevier, vol. 326(C).
    4. Qiu, Diankai & Janßen, Holger & Peng, Linfa & Irmscher, Philipp & Lai, Xinmin & Lehnert, Werner, 2018. "Electrical resistance and microstructure of typical gas diffusion layers for proton exchange membrane fuel cell under compression," Applied Energy, Elsevier, vol. 231(C), pages 127-137.
    5. Jiao, Daokuan & Jiao, Kui & Zhong, Shenghui & Du, Qing, 2022. "Investigations on heat and mass transfer in gas diffusion layers of PEMFC with a gas–liquid-solid coupled model," Applied Energy, Elsevier, vol. 316(C).
    6. Bouziane, Khadidja & Khetabi, El Mahdi & Lachat, Rémy & Zamel, Nada & Meyer, Yann & Candusso, Denis, 2020. "Impact of cyclic mechanical compression on the electrical contact resistance between the gas diffusion layer and the bipolar plate of a polymer electrolyte membrane fuel cell," Renewable Energy, Elsevier, vol. 153(C), pages 349-361.
    7. Somayeh Toghyani & Seyed Ali Atyabi & Xin Gao, 2021. "Enhancing the Specific Power of a PEM Fuel Cell Powered UAV with a Novel Bean-Shaped Flow Field," Energies, MDPI, vol. 14(9), pages 1-23, April.
    8. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    9. Wang, Chenfang & Li, Qingshan & Wang, Chunmei & Zhang, Yangjun & Zhuge, Weilin, 2021. "Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle," Energy, Elsevier, vol. 232(C).
    10. Ismail, M.S. & Ingham, D.B. & Ma, L. & Hughes, K.J. & Pourkashanian, M., 2017. "Effects of catalyst agglomerate shape in polymer electrolyte fuel cells investigated by a multi-scale modelling framework," Energy, Elsevier, vol. 122(C), pages 420-430.
    11. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    12. Zhao, Jian & Shahgaldi, Samaneh & Alaefour, Ibrahim & Xu, Qian & Li, Xianguo, 2018. "Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 203-210.
    13. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    14. Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
    15. Bhosale, Amit C. & Rengaswamy, Raghunathan, 2019. "Interfacial contact resistance in polymer electrolyte membrane fuel cells: Recent developments and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    16. Jiang, Wei & Zhang, Kai & Huang, Xing & Cai, Zhen & Zheng, Jinjin & Kai, Yue & Zheng, Bailin & Song, Ke, 2024. "Influence of clamping pressure on contact pressure uniformity and electrical output performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 353(PA).
    17. Guan, Dong & Pan, Biyu & Chen, Zhen & Li, Jing & Shen, Hui & Pang, Huan, 2023. "Quantitative modeling and bio-inspired optimization the clamping load on the bipolar plate in PEMFC," Energy, Elsevier, vol. 263(PD).
    18. Hu, Bin & He, Guangjian & Chang, Fulu & Yang, Han & Cao, Xianwu & Yin, Xiaochun, 2022. "Low filler and highly conductive composite bipolar plates with synergistic segregated structure for enhanced proton exchange membrane fuel cell performance," Energy, Elsevier, vol. 251(C).
    19. Yanqin Chen & Yuchao Ke & Yingsong Xia & Chongdu Cho, 2021. "Investigation on Mechanical Properties of a Carbon Paper Gas Diffusion Layer through a 3-D Nonlinear and Orthotropic Constitutive Model," Energies, MDPI, vol. 14(19), pages 1-14, October.
    20. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:145-:d:302598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.