IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p114-d301777.html
   My bibliography  Save this article

Entransy Dissipation Analysis and New Irreversibility Dimension Ratio of Nanofluid Flow Through Adaptive Heating Elements

Author

Listed:
  • Fikret Alic

    (Faculty of Mechanical Engineering Tuzla, Department of Thermal and Fluid Technique, University of Tuzla, Tuzla 75000, Bosnia and Herzegovina)

Abstract

A hollow electric heating cylinder is inserted inside a thermo-insulating cylindrical body of larger diameter, together representing a single cylindrical heating element. Three cylindrical heating elements, with an independent electrical source, are arranged alternately one after the other to form a heating duct. The internal diameters of the hollow heating cylinders are different, and the cylinders are arranged from the largest to the smallest in the nanofluid’s flow direction. Through these hollow heating cylinders passes nanofluid, which is thereby heated. The material of the hollow heating cylinders is a PTC (positive temperature coefficient) heating source, which allows maintaining approximately constant temperatures of the cylinders’ surfaces. The analytical analysis used three temperatures of the hollow heating cylinders of 400 K, 500 K, and 600 K. The temperatures of the heating cylinders are varied for each of the three cylindrical heating elements. In the same arrangement, the inner diameters of the hollow cylinders are set to 15 mm, 11 mm, and 7 mm in the nanofluid’s flow direction. The basis of the analytical model is the entransy flow dissipation rate. Furthermore, a new dimension irreversibility ratio is introduced as the ratio between entransy flow dissipation and thermal-generated entropy. This paper provides a suitable basis for optimizing the geometric and process parameters of cylindrical heating elements. An optimization criterion can be maximizing the new dimensionless irreversibility ratio, which implies minimizing thermal entropy and maximizing entransy flow dissipation.

Suggested Citation

  • Fikret Alic, 2019. "Entransy Dissipation Analysis and New Irreversibility Dimension Ratio of Nanofluid Flow Through Adaptive Heating Elements," Energies, MDPI, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:114-:d:301777
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Huiru & Liu, Zhenyu & Wu, Huiying, 2017. "Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array," Energy, Elsevier, vol. 138(C), pages 739-751.
    2. Brown, K.J. & Farrelly, R. & O’Shaughnessy, S.M. & Robinson, A.J., 2016. "Energy efficiency of electrical infrared heating elements," Applied Energy, Elsevier, vol. 162(C), pages 581-588.
    3. Liu, Y.K. & Tao, Y.B., 2018. "Thermodynamic analysis and optimization of multistage latent heat storage unit under unsteady inlet temperature based on entransy theory," Applied Energy, Elsevier, vol. 227(C), pages 488-496.
    4. Wang, C. & Zhu, Y., 2018. "Entransy analysis on optimization of a double-stage latent heat storage unit with the consideration of an unequal separation," Energy, Elsevier, vol. 148(C), pages 386-396.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chunwei & Zhang, Xuejun & Qiu, Limin & Zhao, Yang, 2020. "Thermodynamic investigation of cascaded latent heat storage system based on a dynamic heat transfer model and DE algorithm," Energy, Elsevier, vol. 211(C).
    2. Zhang, Chenyu & Wang, Ning & Yang, Qiguo & Xu, Hongtao & Qu, Zhiguo & Fang, Yuan, 2022. "Energy and exergy analysis of a switchable solar photovoltaic/thermal-phase change material system with thermal regulation strategies," Renewable Energy, Elsevier, vol. 196(C), pages 1392-1405.
    3. Xu, H.J. & Zhao, C.Y., 2019. "Analytical considerations on optimization of cascaded heat transfer process for thermal storage system with principles of thermodynamics," Renewable Energy, Elsevier, vol. 132(C), pages 826-845.
    4. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study," Energy, Elsevier, vol. 220(C).
    5. Joong Yong Yi & Kyung Min Kim & Jongjun Lee & Mun Sei Oh, 2019. "Exergy Analysis for Utilizing Latent Energy of Thermal Energy Storage System in District Heating," Energies, MDPI, vol. 12(7), pages 1-13, April.
    6. Mao, Qianjun & Zhang, Yufei, 2023. "Effect of unsteady heat source condition on thermal performance for cascaded latent heat storage packed bed," Energy, Elsevier, vol. 284(C).
    7. Boris Vladimirovich Borisov & Alexander Vitalievich Vyatkin & Geniy Vladimirovich Kuznetsov & Vyacheslav Ivanovich Maksimov & Tatiana Aleksandrovna Nagornova, 2022. "Analysis of the Influence of the Gas Infrared Heater and Equipment Element Relative Positions on Industrial Premises Thermal Conditions," Energies, MDPI, vol. 15(22), pages 1-19, November.
    8. Chen, Xue & Li, Xiaolei & Xia, Xinlin & Sun, Chuang & Liu, Rongqiang, 2021. "Thermal storage analysis of a foam-filled PCM heat exchanger subjected to fluctuating flow conditions," Energy, Elsevier, vol. 216(C).
    9. Rahimi, M. & Ardahaie, S. Saedi & Hosseini, M.J. & Gorzin, M., 2020. "Energy and exergy analysis of an experimentally examined latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 147(P1), pages 1845-1860.
    10. Chang, Chun & Xu, Xiaoyu & Guo, Xinxin & Yu, Rong & Rasakhodzhaev, Bakhramzhan & Bao, Daorina & Zhao, Mingzhi, 2024. "Experimental and numerical study during the solidification process of a vertical and horizontal coiled ice storage system," Energy, Elsevier, vol. 298(C).
    11. Lu, Shilei & Lin, Quanyi & Xu, Bowen & Yue, Lu & Feng, Wei, 2023. "Thermodynamic performance of cascaded latent heat storage systems for building heating," Energy, Elsevier, vol. 282(C).
    12. Tao, Y.B. & Liu, Y.K. & He, Y.L., 2019. "Effect of carbon nanomaterial on latent heat storage performance of carbonate salts in horizontal concentric tube," Energy, Elsevier, vol. 185(C), pages 994-1004.
    13. Xu, Bowen & Lu, Shilei & Wang, Ran & Zhai, Xue & Fan, Minchao & Jia, Wei & Du, Haibing, 2021. "Exergy analysis and optimization of charging–discharging processes for cascaded latent heat storage system," Energy, Elsevier, vol. 223(C).
    14. Qin, Mingyuan & Chew, Bee Teng & Yau, Yat Huang & Wang, Xinru & Wang, Chunqing & Luo, Xueqing & Li, Lei & Pan, Song, 2023. "Emergency heater based on gas-fired catalytic combustion infrared technology: Structure, evaluation and thermal response," Energy, Elsevier, vol. 274(C).
    15. Zhang, Chunwei & Zhang, Xuejun & Qiu, Limin & Zhao, Yang, 2021. "Thermodynamic analysis and improvement of cascaded latent heat storage system using temperature-enthalpy diagram," Energy, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:114-:d:301777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.