IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1495-d224499.html
   My bibliography  Save this article

Mass Production Test of Solar Cells and Modules Made of 100% UMG Silicon. 20.76% Record Efficiency

Author

Listed:
  • Eduardo Forniés

    (Aurinka PV Group, Marie Curie 19, Rivas-Vaciamadrid, 28521 Madrid, Spain)

  • Bruno Ceccaroli

    (Marche and Isosilicon AS, Rognelia 30, 4622-Kristiansand, Norway)

  • Laura Méndez

    (Aurinka PV Group, Marie Curie 19, Rivas-Vaciamadrid, 28521 Madrid, Spain)

  • Alejandro Souto

    (FerroSolar, C Ucrania 6, Puertollano, 13500 Ciudad Real, Spain)

  • Antonio Pérez Vázquez

    (FerroSolar, C Ucrania 6, Puertollano, 13500 Ciudad Real, Spain)

  • Timur Vlasenko

    (FerroSolar, C Ucrania 6, Puertollano, 13500 Ciudad Real, Spain)

  • Joaquín Dieguez

    (Ferroglobe, 15142 Arteixo-La Coruña, Spain)

Abstract

For more than 15 years FerroAtlantica (now Ferroglobe) has been developing a method of silicon purification to obtain Upgraded Metallurgical Grade Silicon (UMG-Si) for PV solar application without blending. After many improvements and optimizations, the final process has clearly demonstrated its validity in terms of quality and costs. In this paper the authors present new results stemming from a first mass-production campaign and a detailed description of the purification process that results in the tested UMG-Si. The subsequent steps in the value chain for the wafer, cell and module manufacturing are also described. Two independent companies, among the Tier-1 solar cells producers, were selected for the industrial test, each using a different solar cell technology: Al-BSF and black silicon + PERC. Cells and modules were manufactured in conventional production lines and their performances compared to those obtained with standard polysilicon wafers produced in the same lines and periods. Thus, for Al-BSF technology, the average efficiency of solar cells obtained with UMG-Si was (18.4 ± 0.4)% compared to 18.49% obtained with polysilicon-made wafers. In the case of black silicon + PERC, the average efficiency obtained with UMG-Si was (20.1 ± 0.6)%, compared to 20.41% for polysilicon multicrystalline wafers.

Suggested Citation

  • Eduardo Forniés & Bruno Ceccaroli & Laura Méndez & Alejandro Souto & Antonio Pérez Vázquez & Timur Vlasenko & Joaquín Dieguez, 2019. "Mass Production Test of Solar Cells and Modules Made of 100% UMG Silicon. 20.76% Record Efficiency," Energies, MDPI, vol. 12(8), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1495-:d:224499
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1495/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1495/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chiara Modanese & Hannu S. Laine & Toni P. Pasanen & Hele Savin & Joshua M. Pearce, 2018. "Economic Advantages of Dry-Etched Black Silicon in Passivated Emitter Rear Cell (PERC) Photovoltaic Manufacturing," Energies, MDPI, vol. 11(9), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariusz Niekurzak & Wojciech Lewicki & Wojciech Drożdż & Paweł Miązek, 2022. "Measures for Assessing the Effectiveness of Investments for Electricity and Heat Generation from the Hybrid Cooperation of a Photovoltaic Installation with a Heat Pump on the Example of a Household," Energies, MDPI, vol. 15(16), pages 1-20, August.
    2. Agnieszka Operacz & Agnieszka Zachora-Buławska & Izabela Strzelecka & Mariusz Buda & Bogusław Bielec & Karolina Migdał & Tomasz Operacz, 2022. "The Standard Geothermal Plant as an Innovative Combined Renewable Energy Resources System: The Case from South Poland," Energies, MDPI, vol. 15(17), pages 1-23, September.
    3. Deshmukh, Swaraj Sanjay & Pearce, Joshua M., 2021. "Electric vehicle charging potential from retail parking lot solar photovoltaic awnings," Renewable Energy, Elsevier, vol. 169(C), pages 608-617.
    4. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    5. Chelsea Schelly & Don Lee & Elise Matz & Joshua M. Pearce, 2021. "Applying a Relationally and Socially Embedded Decision Framework to Solar Photovoltaic Adoption: A Conceptual Exploration," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    6. Adesanya, Adewale A. & Pearce, Joshua M., 2019. "Economic viability of captive off-grid solar photovoltaic and diesel hybrid energy systems for the Nigerian private sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Joshua M. Pearce & Emily Prehoda, 2019. "Could 79 People Solarize the U.S. Electric Grid?," Societies, MDPI, vol. 9(1), pages 1-27, March.
    8. Hayibo, Koami Soulemane & Pearce, Joshua M., 2021. "A review of the value of solar methodology with a case study of the U.S. VOS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Peffley, Trevor B. & Pearce, Joshua M., 2020. "The potential for grid defection of small and medium sized enterprises using solar photovoltaic, battery and generator hybrid systems," Renewable Energy, Elsevier, vol. 148(C), pages 193-204.
    10. Blessing Ugwoke & Adedoyin Adeleke & Stefano P. Corgnati & Joshua M. Pearce & Pierluigi Leone, 2020. "Decentralized Renewable Hybrid Mini-Grids for Rural Communities: Culmination of the IREP Framework and Scale up to Urban Communities," Sustainability, MDPI, vol. 12(18), pages 1-26, September.
    11. Thomas Betten & Shivenes Shammugam & Roberta Graf, 2020. "Adjustment of the Life Cycle Inventory in Life Cycle Assessment for the Flexible Integration into Energy Systems Analysis," Energies, MDPI, vol. 13(17), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1495-:d:224499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.