IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1337-d220810.html
   My bibliography  Save this article

Fractal and Multifractal Analysis of Pore Size Distribution in Low Permeability Reservoirs Based on Mercury Intrusion Porosimetry

Author

Listed:
  • Penghui Su

    (PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China)

  • Zhaohui Xia

    (PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China)

  • Ping Wang

    (PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China)

  • Wei Ding

    (PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China)

  • Yunpeng Hu

    (PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China)

  • Wenqi Zhang

    (PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China)

  • Yujie Peng

    (Guizhou Polytechnic of Construction, Guizhou 551400, China)

Abstract

To quantitatively evaluate the complexities and heterogeneities of pore structures in sandstone reservoirs, we apply single fractal theory and multifractal theory to explore the fractal characteristics of pore size distributions based on mercury intrusion porosimetry. The fractal parameters were calculated and the relationships between the petrophysical parameters (permeability and entry pressure) and the fractal parameters were investigated. The results show that the single fractal curves exhibit two-stage characteristics and the corresponding fractal dimensions D 1 and D 2 can characterize the complexity of pore structure in different sizes. Favorable linear relationships between log( ε ) and log( μ ,( ε )) indicate that the samples satisfy multifractal characteristics and ε is the sub-intervals with size ε = J × 2 − k . The multifractal singularity curves used in this study exhibit a right shape, indicating that the heterogeneity of the reservoir is mainly affected by pore size distributions in sparse regions. Multifractal parameters, D (0), D (1), and Δ f , are positively correlated with permeability and entry pressure, while D (0), D (1), and Δ f are negatively correlated with permeability and entry pressure. The ratio of larger pores volumes to total pore volumes acts as a control on the fractal dimension over a specific pore size range, while the range of the pore size distribution has a definite impact on the multifractal parameters. Results indicate that fractal analysis and multifractal analysis are feasible methods for characterizing the heterogeneity of pore structures in a reservoir. However, the single fractal models ignore the influence of microfractures, which could result in abnormal values for calculated fractal dimension. Compared to single fractal analysis, multifractal theory can better quantitatively characterize the heterogeneity of pore structure and establish favorable relationships with reservoir physical property parameters.

Suggested Citation

  • Penghui Su & Zhaohui Xia & Ping Wang & Wei Ding & Yunpeng Hu & Wenqi Zhang & Yujie Peng, 2019. "Fractal and Multifractal Analysis of Pore Size Distribution in Low Permeability Reservoirs Based on Mercury Intrusion Porosimetry," Energies, MDPI, vol. 12(7), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1337-:d:220810
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1337/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1337/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gang Lei & Nai Cao & Di Liu & Huijie Wang, 2018. "A Non-Linear Flow Model for Porous Media Based on Conformable Derivative Approach," Energies, MDPI, vol. 11(11), pages 1-11, November.
    2. Subhakar, D. & Chandrasekhar, E., 2016. "Reservoir characterization using multifractal detrended fluctuation analysis of geophysical well-log data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 57-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing Zeng & Weiqiang Li & Jue Hou & Wenqi Zhao & Yunyang Liu & Yongbo Kang, 2022. "Fractal Characteristics of Pore-Throats Structure and Quality Evaluation of Carbonate Reservoirs in Eastern Margin of Pre-Caspian Basin," Energies, MDPI, vol. 15(17), pages 1-13, August.
    2. Mehrdad Massoudi, 2020. "Mathematical Modeling of Fluid Flow and Heat Transfer in Petroleum Industries and Geothermal Applications," Energies, MDPI, vol. 13(6), pages 1-4, March.
    3. Haifei Lin & Yang Bai & Jingting Bu & Shugang Li & Min Yan & Pengxiang Zhao & Lei Qin, 2019. "Comprehensive Fractal Model and Pore Structural Features of Medium- and Low-Rank Coal from the Zhunnan Coalfield of Xinjiang, China," Energies, MDPI, vol. 13(1), pages 1-15, December.
    4. Xiaobin Li & Wei Wei & Lei Wang & Jianchao Cai, 2022. "Fractal Dimension of Digital 3D Rock Models with Different Pore Structures," Energies, MDPI, vol. 15(20), pages 1-16, October.
    5. Qingshun Gong & Zhanguo Liu & Chao Zhu & Bo Wang & Yijie Jin & Zhenghao Shi & Lin Xie & Jin Wu, 2023. "Heterogeneity of a Sandy Conglomerate Reservoir in Qie12 Block, Qaidam Basin, Northwest China and Its Influence on Remaining Oil Distribution," Energies, MDPI, vol. 16(7), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lijun Gao & Yunze Li & Huijuan Xu & Xin Zhang & Man Yuan & Xianwen Ning, 2019. "Numerical Investigation on Heat-Transfer and Hydromechanical Performance inside Contaminant-Insensitive Sublimators under a Vacuum Environment for Spacecraft Applications," Energies, MDPI, vol. 12(23), pages 1-21, November.
    2. Bhardwaj, Shivam & Gadre, Vikram M. & Chandrasekhar, E., 2020. "Statistical analysis of DWT coefficients of fGn processes using ARFIMA(p,d,q) models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    3. Charutha, S. & Gopal Krishna, M. & Manimaran, P., 2020. "Multifractal analysis of Indian public sector enterprises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    4. Bhardwaj, Shivam & Chandrasekhar, E. & Seemala, Gopi K. & Gadre, Vikram M., 2020. "Characterization of ionospheric total electron content data using wavelet-based multifractal formalism," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    5. Shaw, Pankaj Kumar & Saha, Debajyoti & Ghosh, Sabuj & Janaki, M.S. & Iyengar, A.N. Sekar, 2017. "Investigation of multifractal nature of floating potential fluctuations obtained from a dc glow discharge magnetized plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 363-371.
    6. Gairola, Gaurav S. & Chandrasekhar, E., 2017. "Heterogeneity analysis of geophysical well-log data using Hilbert–Huang transform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 131-142.
    7. Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M., 2020. "The (in)efficiency of NYMEX energy futures: A multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    8. Jianchao Cai & Zhien Zhang & Qinjun Kang & Harpreet Singh, 2019. "Recent Advances in Flow and Transport Properties of Unconventional Reservoirs," Energies, MDPI, vol. 12(10), pages 1-5, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1337-:d:220810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.