IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1252-d219024.html
   My bibliography  Save this article

Calculation and Analysis of Rotor Thermal Static Field for Inter-Turn Short Circuit of Large Hydro-Generator Excitation Winding

Author

Listed:
  • Junqing Li

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003, China)

  • Luo Wang

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003, China)

Abstract

Rotor winding inter-turn short circuit a common fault in hydro-generators. This fault would change the temperature, stress, and other thermal fields of a rotor and threaten the safe operation of the generator. In this paper, the Three Gorges hydro-generator is taken as an example. Mathematical models of three-dimensional temperature field and thermal stress field of rotor magnetic poles are established based on heat transfer theory and solved by finite element method. The temperature field, thermal deformation, and thermal stress distribution of magnetic poles in rotor winding inter-turn short circuit are calculated. On the basis of the calculation, the effects of the different turn numbers and positions of short circuit on the temperature, thermal deformation, and thermal stress of rotor magnetic poles are further studied. It is concluded that the thermal stress of the winding adjacent to the shorted turn would decrease, the thermal stress of the winding farther away from the shorted winding would increase, and so on. The results of this paper can provide references for inter-turn short circuit fault diagnosis and lay a foundation for the further studies of related faults.

Suggested Citation

  • Junqing Li & Luo Wang, 2019. "Calculation and Analysis of Rotor Thermal Static Field for Inter-Turn Short Circuit of Large Hydro-Generator Excitation Winding," Energies, MDPI, vol. 12(7), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1252-:d:219024
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1252/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1252/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weili Li & Yong Li & Ying Su & Purui Wang & Wenmao Liu, 2018. "Research on Stator Main Insulation Temperature Field of Air-Cooled Turbo-Generator after Main Insulation Shelling," Energies, MDPI, vol. 11(5), pages 1-15, April.
    2. Ying Xie & Jinpeng Guo & Peng Chen & Zhiwei Li, 2018. "Coupled Fluid-Thermal Analysis for Induction Motors with Broken Bars Operating under the Rated Load," Energies, MDPI, vol. 11(8), pages 1-17, August.
    3. Minghan Ma & Yonggang Li & Yucai Wu & Chenchen Dong, 2018. "Multifield Calculation and Analysis of Excitation Winding Interturn Short Circuit Fault in Turbo-Generator," Energies, MDPI, vol. 11(10), pages 1-16, October.
    4. Luo Wang & Yonggang Li & Junqing Li, 2018. "Diagnosis of Inter-Turn Short Circuit of Synchronous Generator Rotor Winding Based on Volterra Kernel Identification," Energies, MDPI, vol. 11(10), pages 1-15, September.
    5. Dong Li & Yinghong Wen & Weili Li & Bo Feng & Junci Cao, 2018. "Three-Dimensional Temperature Field Calculation and Analysis of an Axial-Radial Flux-Type Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 11(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minghan Ma & Yonggang Li & Yucai Wu & Chenchen Dong, 2018. "Multifield Calculation and Analysis of Excitation Winding Interturn Short Circuit Fault in Turbo-Generator," Energies, MDPI, vol. 11(10), pages 1-16, October.
    2. Yanling Lv & Yizhi Du & Qi Liu & Shiqiang Hou & Jie Zhang, 2019. "Study and Stability Analysis of Leading Phase Operation of a Large Synchronous Generator," Energies, MDPI, vol. 12(6), pages 1-14, March.
    3. Jan Mróz & Wojciech Poprawski, 2019. "Improvement of the Thermal and Mechanical Strength of the Starting Cage of Double-Cage Induction Motors," Energies, MDPI, vol. 12(23), pages 1-13, November.
    4. Karolina Kudelina & Bilal Asad & Toomas Vaimann & Anton Rassõlkin & Ants Kallaste & Huynh Van Khang, 2021. "Methods of Condition Monitoring and Fault Detection for Electrical Machines," Energies, MDPI, vol. 14(22), pages 1-20, November.
    5. Zia Ullah & Jin Hur, 2018. "A Comprehensive Review of Winding Short Circuit Fault and Irreversible Demagnetization Fault Detection in PM Type Machines," Energies, MDPI, vol. 11(12), pages 1-27, November.
    6. Junci Cao & Hua Yan & Dong Li & Yu Wang & Weili Li, 2021. "Influence of the Variable Cross-Section Stator Ventilation Structure on the Temperature of an Induction Motor," Energies, MDPI, vol. 14(17), pages 1-17, August.
    7. Arkadiusz Duda & Maciej Sułowicz, 2020. "A New Effective Method of Induction Machine Condition Assessment Based on Zero-Sequence Voltage (ZSV) Symptoms," Energies, MDPI, vol. 13(14), pages 1-26, July.
    8. Andrea Credo & Marco Tursini & Marco Villani & Claudia Di Lodovico & Michele Orlando & Federico Frattari, 2021. "Axial Flux PM In-Wheel Motor for Electric Vehicles: 3D Multiphysics Analysis," Energies, MDPI, vol. 14(8), pages 1-18, April.
    9. Israel Zamudio-Ramirez & Roque Alfredo Osornio-Rios & Miguel Trejo-Hernandez & Rene de Jesus Romero-Troncoso & Jose Alfonso Antonino-Daviu, 2019. "Smart-Sensors to Estimate Insulation Health in Induction Motors via Analysis of Stray Flux," Energies, MDPI, vol. 12(9), pages 1-16, May.
    10. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1252-:d:219024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.