IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p988-d213760.html
   My bibliography  Save this article

Design and Realization of a Multiple Access Wireless Power Transfer System for Optimal Power Line Communication Data Transfer

Author

Listed:
  • Sami Barmada

    (Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56122 Pisa, Italy
    These authors contributed equally to this work.)

  • Mauro Tucci

    (Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56122 Pisa, Italy
    These authors contributed equally to this work.)

  • Nunzia Fontana

    (Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56122 Pisa, Italy
    These authors contributed equally to this work.)

  • Wael Dghais

    (Department of Electronics, Higher Institute of Applied Science and Technology of Sousse, Université de Sousse, Sousse 4003, Tunisia
    These authors contributed equally to this work.)

  • Marco Raugi

    (Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56122 Pisa, Italy
    These authors contributed equally to this work.)

Abstract

In this contribution, the authors evaluate the possibility of using separated access points for power and data transfer in a coupled Wireless Power Transfer-Powerline Communication system. Such a system has been previously proposed by the authors for specific applications, in which Wireless Power Transfer (WPT) should take place in a system where data are transmitted over the power grid. In previous works the authors have performed lab tests on a two coils WPT system equipped with a set of filters to also allow an efficient data transfer. When a multiple coil WPT system is chosen, additional possibilities arise: the access point for power and data can be differentiated, with the aim of maintaining the designed power efficiency and increase data transfer capacity. In this study a four coils WPT system is thoroughly analyzed, modelled, implemented and measured, and a set of guidelines for the correct design (in terms of performance optimization) of the data transfer is given.

Suggested Citation

  • Sami Barmada & Mauro Tucci & Nunzia Fontana & Wael Dghais & Marco Raugi, 2019. "Design and Realization of a Multiple Access Wireless Power Transfer System for Optimal Power Line Communication Data Transfer," Energies, MDPI, vol. 12(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:988-:d:213760
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/988/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/988/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan Lu & Dongsheng Brian Ma, 2016. "Wireless Power Transfer System Architectures for Portable or Implantable Applications," Energies, MDPI, vol. 9(12), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimo Ceraolo & Valentina Consolo & Mauro Di Monaco & Giovanni Lutzemberger & Antonino Musolino & Rocco Rizzo & Giuseppe Tomasso, 2021. "Design and Realization of an Inductive Power Transfer for Shuttles in Automated Warehouses," Energies, MDPI, vol. 14(18), pages 1-20, September.
    2. Grzegorz Debita & Przemysław Falkowski-Gilski & Marcin Habrych & Grzegorz Wiśniewski & Bogdan Miedziński & Przemysław Jedlikowski & Agnieszka Waniewska & Jan Wandzio & Bartosz Polnik, 2020. "BPL-PLC Voice Communication System for the Oil and Mining Industry," Energies, MDPI, vol. 13(18), pages 1-19, September.
    3. Xiangbiao Cui & Jiayi Xu & Shui Pang & Xingfei Li & Hongyu Li, 2023. "Design and Implementation of Inductively Coupled Power and Data Transmission for Buoy Systems," Energies, MDPI, vol. 16(11), pages 1-19, May.
    4. Safa Zouaoui & Wael Dghais & Rui Melicio & Hamdi Belgacem, 2020. "Omnidirectional WPT and Data Communication for Electric Air Vehicles: Feasibility Study," Energies, MDPI, vol. 13(24), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Chen & Jianfeng Hong & Mingjie Guan & Zaifa Lin & Wenxiang Chen, 2019. "A Converter Based on Independently Inductive Energy Injection and Free Resonance for Wireless Energy Transfer," Energies, MDPI, vol. 12(18), pages 1-19, September.
    2. Narayanamoorthi R. & Vimala Juliet A. & Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Zbigniew M. Leonowicz, 2017. "Class E Power Amplifier Design and Optimization for the Capacitive Coupled Wireless Power Transfer System in Biomedical Implants," Energies, MDPI, vol. 10(9), pages 1-20, September.
    3. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    4. Zhen Zhang & Ruilin Tong & Zhenyan Liang & Chunhua Liu & Jiang Wang, 2018. "Analysis and Control of Optimal Power Distribution for Multi-Objective Wireless Charging Systems," Energies, MDPI, vol. 11(7), pages 1-16, July.
    5. Lin Chen & Jianfeng Hong & Mingjie Guan & Wei Wu & Wenxiang Chen, 2019. "A Power Converter Decoupled from the Resonant Network for Wireless Inductive Coupling Power Transfer," Energies, MDPI, vol. 12(7), pages 1-18, March.
    6. Xin Liu & Tianfeng Wang & Xijun Yang & Nan Jin & Houjun Tang, 2017. "Analysis and Design of a Wireless Power Transfer System with Dual Active Bridges," Energies, MDPI, vol. 10(10), pages 1-20, October.
    7. Xin Liu & Tianfeng Wang & Nan Jin & Salman Habib & Muhammad Ali & Xijun Yang & Houjun Tang, 2018. "Analysis and Elimination of Dead-Time Effect in Wireless Power Transfer System," Energies, MDPI, vol. 11(6), pages 1-15, June.
    8. Xian Zhang & Yanan Ren & Lin Sha & Qingxin Yang & Xuejing Ni & Fengxian Wang, 2020. "Analysis of Dynamic Characteristics of Foreign Metal Objects under Electromagnetic Force in High-Power Wireless Power Transfer," Energies, MDPI, vol. 13(15), pages 1-15, July.
    9. Li Zhai & Yu Cao & Liwen Lin & Tao Zhang & Steven Kavuma, 2018. "Mitigation Conducted Emission Strategy Based on Transfer Function from a DC-Fed Wireless Charging System for Electric Vehicles," Energies, MDPI, vol. 11(3), pages 1-17, February.
    10. Win-Jet Luo & C. Bambang Dwi Kuncoro & Yean-Der Kuan, 2020. "Wireless Power Hanger Pad for Portable Wireless Audio Device Power Charger Application," Energies, MDPI, vol. 13(2), pages 1-18, January.
    11. Marojahan Tampubolon & Laskar Pamungkas & Huang-Jen Chiu & Yu-Chen Liu & Yao-Ching Hsieh, 2018. "Dynamic Wireless Power Transfer for Logistic Robots," Energies, MDPI, vol. 11(3), pages 1-13, February.
    12. Vincenzo Cirimele & Fabio Freschi & Paolo Guglielmi, 2018. "Scaling Rules at Constant Frequency for Resonant Inductive Power Transfer Systems for Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-17, July.
    13. Lin Chen & Jianfeng Hong & Zaifa Lin & Daqing Luo & Mingjie Guan & Wenxiang Chen, 2020. "A Converter with Automatic Stage Transition Control for Inductive Power Transfer," Energies, MDPI, vol. 13(20), pages 1-14, October.
    14. Kamal Eldin Idris Elnail & Xueliang Huang & Chen Xiao & Linlin Tan & Xu Haozhe, 2018. "Core Structure and Electromagnetic Field Evaluation in WPT Systems for Charging Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-17, July.
    15. Supapong Nutwong & Anawach Sangswang & Sumate Naetiladdanon & Ekkachai Mujjalinvimut, 2018. "A Novel Output Power Control of Wireless Powering Kitchen Appliance System with Free-Positioning Feature," Energies, MDPI, vol. 11(7), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:988-:d:213760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.