IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1023-d214330.html
   My bibliography  Save this article

Improved Frequency Locked Loop Based Synchronization Method for Three-Phase Grid-Connected Inverter under Unbalanced and Distorted Grid Conditions

Author

Listed:
  • Wenjie Ma

    (Department of Electric Power, South China University of Technology, Guangzhou 510640, China)

  • Sen Ouyang

    (Department of Electric Power, South China University of Technology, Guangzhou 510640, China)

  • Weidong Xu

    (Department of Electric Power, South China University of Technology, Guangzhou 510640, China)

Abstract

To quickly and accurately estimate the parameters of the fundamental positive- and negative-sequence under the unbalanced and distorted grid voltage, a synchronization method is presented in this paper. The proposed method is based on both a harmonic decoupling network consisting of multiple dual second-order generalized integrators (MDSOGIs) and an improved frequency locked loop (IFLL), so it is called the MDSOGI-IFLL. Due to the IFLL, the system has the feature that the dynamic performance of estimating the fundamental frequency is independent of the variation of both the fundamental positive- and negative-sequence voltage. In this paper, a first-order linear frequency adaption model is established for the design of the IFLL. Finally, the good performance of the proposed MDSOGI-IFLL is validated by the simulation and experiment.

Suggested Citation

  • Wenjie Ma & Sen Ouyang & Weidong Xu, 2019. "Improved Frequency Locked Loop Based Synchronization Method for Three-Phase Grid-Connected Inverter under Unbalanced and Distorted Grid Conditions," Energies, MDPI, vol. 12(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1023-:d:214330
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1023/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1023/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heng Du & Qiuye Sun & Qifu Cheng & Dazhong Ma & Xu Wang, 2019. "An Adaptive Frequency Phase-Locked Loop Based on a Third Order Generalized Integrator," Energies, MDPI, vol. 12(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Alathamneh & Haneen Ghanayem & Xingyu Yang & R. M. Nelms, 2022. "Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Time-Domain Symmetrical Components Extraction Method," Energies, MDPI, vol. 15(19), pages 1-16, September.
    2. Mohammad Alathamneh & Haneen Ghanayem & Xingyu Yang & R. M. Nelms, 2022. "Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Proportional-Resonant Control Method," Energies, MDPI, vol. 15(19), pages 1-17, September.
    3. Mohammad Alathamneh & Haneen Ghanayem & R. M. Nelms, 2022. "Bidirectional Power Control for a Three-Phase Grid-Connected Inverter under Unbalanced Grid Conditions Using a Proportional-Resonant and a Modified Time-Domain Symmetrical Components Extraction Method," Energies, MDPI, vol. 15(24), pages 1-23, December.
    4. Taufik Taluo & Leposava Ristić & Milutin Jovanović, 2021. "Dynamic Modeling and Control of BDFRG under Unbalanced Grid Conditions," Energies, MDPI, vol. 14(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad A. Bany Issa & Zaid A. Al Muala & Pastora M. Bello Bugallo, 2023. "Grid-Connected Renewable Energy Sources: A New Approach for Phase-Locked Loop with DC-Offset Removal," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    2. Yaya Zhang & Jianzhong Zhu & Xueyu Dong & Pinchao Zhao & Peng Ge & Xiaolian Zhang, 2019. "A Control Strategy for Smooth Power Tracking of a Grid-Connected Virtual Synchronous Generator Based on Linear Active Disturbance Rejection Control," Energies, MDPI, vol. 12(15), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1023-:d:214330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.