IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p662-d207090.html
   My bibliography  Save this article

Towards a Persuasive Recommender for Bike Sharing Systems: A Defeasible Argumentation Approach

Author

Listed:
  • Carlos Diez

    (Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain)

  • Javier Palanca

    (Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain)

  • Victor Sanchez-Anguix

    (Unidad de Tecnologías de la Comunicación e Información, Florida Universitaria, Carrer del Rei en Jaume I, 2, 46470 Catarroja, Spain
    Facultad de Ciencia y Tecnología, Universidad Isabel I, Calle de Fernan Gonzalez, 76, 09003 Burgos, Spain)

  • Stella Heras

    (Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain)

  • Adriana Giret

    (Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain)

  • Vicente Julián

    (Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain)

Abstract

This work proposes a persuasion model based on argumentation theory and users’ characteristics for improving the use of resources in bike sharing systems, fostering the use of the bicycles and thus contributing to greater energy sustainability by reducing the use of carbon-based fuels. More specifically, it aims to achieve a balanced network of pick-up and drop-off stations in urban areas with the help of the users, thus reducing the dedicated management trucks that redistribute bikes among stations. The proposal aims to persuade users to choose different routes from the shortest route between a start and an end location. This persuasion is carried out when it is not possible to park the bike in the desired station due to the lack of parking slots, or when the user is highly influenceable. Differently to other works, instead of employing a single criteria to recommend alternative stations, the proposed system can incorporate a variety of criteria. This result is achieved by providing a defeasible logic-based persuasion engine that is capable of aggregating the results from multiple recommendation rules. The proposed framework is showcased with an example scenario of a bike sharing system.

Suggested Citation

  • Carlos Diez & Javier Palanca & Victor Sanchez-Anguix & Stella Heras & Adriana Giret & Vicente Julián, 2019. "Towards a Persuasive Recommender for Bike Sharing Systems: A Defeasible Argumentation Approach," Energies, MDPI, vol. 12(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:662-:d:207090
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/662/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/662/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erdoğan, Güneş & Laporte, Gilbert & Wolfler Calvo, Roberto, 2014. "The static bicycle relocation problem with demand intervals," European Journal of Operational Research, Elsevier, vol. 238(2), pages 451-457.
    2. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    3. Alvarez-Valdes, Ramon & Belenguer, Jose M. & Benavent, Enrique & Bermudez, Jose D. & Muñoz, Facundo & Vercher, Enriqueta & Verdejo, Francisco, 2016. "Optimizing the level of service quality of a bike-sharing system," Omega, Elsevier, vol. 62(C), pages 163-175.
    4. Evangelia Anagnostopoulou & Efthimios Bothos & Babis Magoutas & Johann Schrammel & Gregoris Mentzas, 2018. "Persuasive Technologies for Sustainable Mobility: State of the Art and Emerging Trends," Sustainability, MDPI, vol. 10(7), pages 1-22, June.
    5. Linfeng Li & Miyuan Shan, 2016. "Bidirectional Incentive Model for Bicycle Redistribution of a Bicycle Sharing System during Rush Hour," Sustainability, MDPI, vol. 8(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alain Quilliot & Antoine Sarbinowski & Hélène Toussaint, 2021. "Vehicle driven approaches for non preemptive vehicle relocation with integrated quality criterion in a vehicle sharing system," Annals of Operations Research, Springer, vol. 298(1), pages 445-468, March.
    2. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Tang, Fang, 2020. "Static rebalancing optimization with considering the collection of malfunctioning bikes in free-floating bike sharing system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    3. Muhammad Usama & Yongjun Shen & Onaira Zahoor, 2019. "Towards an Energy Efficient Solution for Bike-Sharing Rebalancing Problems: A Battery Electric Vehicle Scenario," Energies, MDPI, vol. 12(13), pages 1-21, June.
    4. Bahman Lahoorpoor & Hamed Faroqi & Abolghasem Sadeghi-Niaraki & Soo-Mi Choi, 2019. "Spatial Cluster-Based Model for Static Rebalancing Bike Sharing Problem," Sustainability, MDPI, vol. 11(11), pages 1-21, June.
    5. Carlos M. Vallez & Mario Castro & David Contreras, 2021. "Challenges and Opportunities in Dock-Based Bike-Sharing Rebalancing: A Systematic Review," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    6. Ruijing Wu & Shaoxuan Liu & Zhenyang Shi, 2019. "Customer Incentive Rebalancing Plan in Free-Float Bike-Sharing System with Limited Information," Sustainability, MDPI, vol. 11(11), pages 1-24, May.
    7. Szeto, W.Y. & Shui, C.S., 2018. "Exact loading and unloading strategies for the static multi-vehicle bike repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 176-211.
    8. Bulhões, Teobaldo & Subramanian, Anand & Erdoğan, Güneş & Laporte, Gilbert, 2018. "The static bike relocation problem with multiple vehicles and visits," European Journal of Operational Research, Elsevier, vol. 264(2), pages 508-523.
    9. Yongji Jia & Wang Zeng & Yanting Xing & Dong Yang & Jia Li, 2020. "The Bike-Sharing Rebalancing Problem Considering Multi-Energy Mixed Fleets and Traffic Restrictions," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    10. Wang, Xu & Sun, Huijun & Zhang, Si & Lv, Ying & Li, Tongfei, 2022. "Bike sharing rebalancing problem with variable demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    11. Bruno Albert Neumann-Saavedra & Teodor Gabriel Crainic & Bernard Gendron & Dirk Christian Mattfeld & Michael Römer, 2020. "Integrating Resource Management in Service Network Design for Bike-Sharing Systems," Transportation Science, INFORMS, vol. 54(5), pages 1251-1271, September.
    12. Chen, Qingxin & Ma, Shoufeng & Li, Hongming & Zhu, Ning & He, Qiao-Chu, 2024. "Optimizing bike rebalancing strategies in free-floating bike-sharing systems: An enhanced distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    13. Dell’Amico, Mauro & Iori, Manuel & Novellani, Stefano & Subramanian, Anand, 2018. "The Bike sharing Rebalancing Problem with Stochastic Demands," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 362-380.
    14. Gleditsch, Marte D. & Hagen, Kristine & Andersson, Henrik & Bakker, Steffen J. & Fagerholt, Kjetil, 2024. "A column generation heuristic for the dynamic bicycle rebalancing problem," European Journal of Operational Research, Elsevier, vol. 317(3), pages 762-775.
    15. Bruno P. Bruck & Fábio Cruz & Manuel Iori & Anand Subramanian, 2019. "The Static Bike Sharing Rebalancing Problem with Forbidden Temporary Operations," Transportation Science, INFORMS, vol. 53(3), pages 882-896, May.
    16. Qiao‐Chu He & Tiantian Nie & Yun Yang & Zuo‐Jun Shen, 2021. "Beyond Repositioning: Crowd‐Sourcing and Geo‐Fencing for Shared‐Mobility Systems," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3448-3466, October.
    17. Maggioni, Francesca & Cagnolari, Matteo & Bertazzi, Luca & Wallace, Stein W., 2019. "Stochastic optimization models for a bike-sharing problem with transshipment," European Journal of Operational Research, Elsevier, vol. 276(1), pages 272-283.
    18. Guo, Yuhan & Li, Jinning & Xiao, Linfan & Allaoui, Hamid & Choudhary, Alok & Zhang, Lufang, 2024. "Efficient inventory routing for Bike-Sharing Systems: A combinatorial reinforcement learning framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    19. Zhou, Yu & Chen, Yang & Liu, Shenyan & Kou, Gang, 2024. "Availability simulation and transfer prediction for bike sharing systems based on discrete event simulation," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    20. Gu, Wei & Yu, Xiaoru & Zhang, Shichen & Yan, Xiangbin & Wang, Chen, 2023. "To outsource or not: Bike-share rebalancing strategies under the service quality deviation of a third party," European Journal of Operational Research, Elsevier, vol. 310(2), pages 847-859.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:662-:d:207090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.