IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i2p257-d197936.html
   My bibliography  Save this article

Experimental Determination of the Friction Factor in a Tube with Internal Helical Ribs

Author

Listed:
  • Sławomir Grądziel

    (Institute of Thermal Power Engineering, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków, Poland)

  • Karol Majewski

    (EthosEnergy, ul. Paprotna 12A, 51-117 Wrocław, Poland)

Abstract

Due to the extended geometry of internally rifled tubes with helical ribs, the rate of convective heat transfer within them is much higher compared to smooth tubes. Simultaneously, a rise in the contact surface area between the fluid and the solid body increases the friction factor. This paper presents the results of experimental testing performed to determine the friction factor in an internally rifled tube with helical ribs. The tests were carried out on a purpose-built test stand. The tested object was a rifled tube used in the evaporator of a once-through supercritical power boiler operating in a power plant in Poland. The friction factor results obtained from testing are compared to the results of calculations performed by means of correlations known from the literature. Finally, using experimental data, a new correlation is developed that enables the determination of the friction factor in internally rifled tubes with helical ribs.

Suggested Citation

  • Sławomir Grądziel & Karol Majewski, 2019. "Experimental Determination of the Friction Factor in a Tube with Internal Helical Ribs," Energies, MDPI, vol. 12(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:257-:d:197936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/2/257/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/2/257/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Zhouhang & Tang, Guoli & Wu, Yuxin & Zhai, Yuling & Xu, Jianxin & Wang, Hua & Lu, Junfu, 2016. "Improved gas heaters for supercritical CO2 Rankine cycles: Considerations on forced and mixed convection heat transfer enhancement," Applied Energy, Elsevier, vol. 178(C), pages 126-141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Taler & Paweł Ocłoń & Marcin Trojan & Abdulmajeed Mohamad, 2019. "Selected Papers from the XI International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2018)," Energies, MDPI, vol. 12(12), pages 1-3, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaojing Zhu & Ruizeng Zhang & Xiao Yu & Maoguo Cao & Yongxiang Ren, 2020. "Numerical Study on the Gravity Effect on Heat Transfer of Supercritical CO 2 in a Vertical Tube," Energies, MDPI, vol. 13(13), pages 1-20, July.
    2. Santini, Lorenzo & Accornero, Carlo & Cioncolini, Andrea, 2016. "On the adoption of carbon dioxide thermodynamic cycles for nuclear power conversion: A case study applied to Mochovce 3 Nuclear Power Plant," Applied Energy, Elsevier, vol. 181(C), pages 446-463.
    3. Liu, Xinxin & Xu, Xiaoxiao & Liu, Chao & Bai, Wanjin & Dang, Chaobin, 2018. "Heat transfer deterioration in helically coiled heat exchangers in trans-critical CO2 Rankine cycles," Energy, Elsevier, vol. 147(C), pages 1-14.
    4. Liu, Yun & Dong, Yue & Li, Tao & Zhang, Chuan-Zhi, 2022. "Performance analysis and comparison of different corrugated structures and a novel alternative elliptical twisted tube in supercritical CO2 tower solar receivers," Renewable Energy, Elsevier, vol. 199(C), pages 1523-1533.
    5. Guo, Yumin & Guo, Xinru & Wang, Jiangfeng & Li, Zhanying & Cheng, Shangfang & Wang, Shunsen, 2024. "Comprehensive analysis and optimization for a novel combined heating and power system based on self-condensing transcritical CO2 Rankine cycle driven by geothermal energy from thermodynamic, exergoeco," Energy, Elsevier, vol. 300(C).
    6. Li, Zhouhang & Zhai, Yuling & Bi, Dapeng & Li, Kongzhai & Wang, Hua & Lu, Junfu, 2017. "Orientation effect in helical coils with smooth and rib-roughened wall: Toward improved gas heaters for supercritical carbon dioxide Rankine cycles," Energy, Elsevier, vol. 140(P1), pages 530-545.
    7. Wang, Dabiao & Tian, Ran & Zhang, Yue & Li, LanLan & Ma, Yuezheng & Shi, Lin & Li, Hui, 2019. "Heat transfer investigation of supercritical R134a for trans-critical organic Rankine cycle system," Energy, Elsevier, vol. 169(C), pages 542-557.
    8. Zhang, Shijie & Xu, Xiaoxiao & Liu, Chao & Dang, Chaobin, 2020. "A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion," Applied Energy, Elsevier, vol. 269(C).
    9. Li, Zhouhang & Zhai, Yuling & Li, Kongzhai & Wang, Hua & Lu, Junfu, 2016. "A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO2 Rankine cycles," Energy, Elsevier, vol. 116(P1), pages 661-676.
    10. Wang, Yuan & Ren, Jing-Jie & Bi, Ming-Shu, 2023. "Analysis on the heat transfer performance of supercritical liquified natural gas in horizontal tubes during regasification process," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:257-:d:197936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.