IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4777-d298117.html
   My bibliography  Save this article

Optimal Allocation of Renewable Energy Hybrid Distributed Generations for Small-Signal Stability Enhancement

Author

Listed:
  • Olusayo A. Ajeigbe

    (Department of Electrical Engineering, French South African Technology Institute, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Staatsartillerie Road, Pretoria 0183, South Africa)

  • Josiah L. Munda

    (Department of Electrical Engineering, French South African Technology Institute, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Staatsartillerie Road, Pretoria 0183, South Africa)

  • Yskandar Hamam

    (Department of Electrical Engineering, French South African Technology Institute, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Staatsartillerie Road, Pretoria 0183, South Africa
    ESIEE Paris, 2 Boulevard Blaise Pascal, Cité Descartes, BP 99, 93162 Noisy-le-Grand, France)

Abstract

This paper solves the allocation planning problem of integrating large scale renewable energy hybrid distributed generations and capacitor banks into the distribution systems. Extraordinarily, the integration of renewable energy hybrid distributed generations such as solar photovoltaic, wind, and biomass takes into consideration the impact assessment of variable generations from PV and wind on the distribution networks’ long term dynamic voltage and small-signal stabilities. Unlike other renewable distributed generations, the variability of power from solar PV and wind generations causes small-signal instabilities if they are sub-optimally allocated in the distribution network. Hence, the variables related to small-signal stability are included and constrained in the model, unlike what is obtainable in the current works on the planning of optimal allocation of renewable distributed generations. Thus, the model is motivated to maximize the penetration of renewable powers by minimizing the net present value of total cost, which includes investment, maintenance, energy, and emission costs. Consequently, the optimization problem is formulated as a stochastic mixed integer linear program, which ensures limited convergence to optimality. Numerical results of the proposed model demonstrate a significant reduction in electricity and emission costs, enhancement of system dynamic voltage and small-signal stabilities, as well as improvement in welfare costs and environmental goodness.

Suggested Citation

  • Olusayo A. Ajeigbe & Josiah L. Munda & Yskandar Hamam, 2019. "Optimal Allocation of Renewable Energy Hybrid Distributed Generations for Small-Signal Stability Enhancement," Energies, MDPI, vol. 12(24), pages 1-31, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4777-:d:298117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4777/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4777/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dicorato, M. & Forte, G. & Trovato, M., 2008. "Environmental-constrained energy planning using energy-efficiency and distributed-generation facilities," Renewable Energy, Elsevier, vol. 33(6), pages 1297-1313.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sylwester Kaczmarzewski & Piotr Olczak & Maciej Sołtysik, 2021. "The Impact of Electricity Consumption Profile in Underground Mines to Cooperate with RES," Energies, MDPI, vol. 14(18), pages 1-20, September.
    2. Adedayo Owosuhi & Yskandar Hamam & Josiah Munda, 2023. "Maximizing the Integration of a Battery Energy Storage System–Photovoltaic Distributed Generation for Power System Harmonic Reduction: An Overview," Energies, MDPI, vol. 16(6), pages 1-22, March.
    3. Abdullah Albaker & Mansoor Alturki & Rabeh Abbassi & Khalid Alqunun, 2022. "Zonal-Based Optimal Microgrids Identification," Energies, MDPI, vol. 15(7), pages 1-15, March.
    4. Huiru Zhao & Hao Lu & Bingkang Li & Xuejie Wang & Shiying Zhang & Yuwei Wang, 2020. "Stochastic Optimization of Microgrid Participating Day-Ahead Market Operation Strategy with Consideration of Energy Storage System and Demand Response," Energies, MDPI, vol. 13(5), pages 1-16, March.
    5. Xu, Bin & Luo, Yuemei & Xu, Renjing & Chen, Jianbao, 2021. "Exploring the driving forces of distributed energy resources in China: Using a semiparametric regression model," Energy, Elsevier, vol. 236(C).
    6. Huiru Zhao & Hao Lu & Xuejie Wang & Bingkang Li & Yuwei Wang & Pei Liu & Zhao Ma, 2020. "Research on Comprehensive Value of Electrical Energy Storage in CCHP Microgrid with Renewable Energy Based on Robust Optimization," Energies, MDPI, vol. 13(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Figaj, Rafał & Żołądek, Maciej, 2021. "Experimental and numerical analysis of hybrid solar heating and cooling system for a residential user," Renewable Energy, Elsevier, vol. 172(C), pages 955-967.
    2. Vahidinasab, Vahid, 2014. "Optimal distributed energy resources planning in a competitive electricity market: Multiobjective optimization and probabilistic design," Renewable Energy, Elsevier, vol. 66(C), pages 354-363.
    3. Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.
    4. Şengül, Ümran & Eren, Miraç & Eslamian Shiraz, Seyedhadi & Gezder, Volkan & Şengül, Ahmet Bilal, 2015. "Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 617-625.
    5. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    6. Bakos, G.C., 2009. "Distributed power generation: A case study of small scale PV power plant in Greece," Applied Energy, Elsevier, vol. 86(9), pages 1757-1766, September.
    7. Ren, Hongbo & Gao, Weijun, 2010. "A MILP model for integrated plan and evaluation of distributed energy systems," Applied Energy, Elsevier, vol. 87(3), pages 1001-1014, March.
    8. Omu, Akomeno & Choudhary, Ruchi & Boies, Adam, 2013. "Distributed energy resource system optimisation using mixed integer linear programming," Energy Policy, Elsevier, vol. 61(C), pages 249-266.
    9. Zhou, Xiong & Huang, Guohe & Zhu, Hua & Chen, Jiapei & Xu, Jinliang, 2015. "Chance-constrained two-stage fractional optimization for planning regional energy systems in British Columbia, Canada," Applied Energy, Elsevier, vol. 154(C), pages 663-677.
    10. Zhang, Chao & Wen, Zongguo & Chen, Jining, 2009. "An integrated model for technology forecasting to reduce pollutant emission in China's pulp industry," Resources, Conservation & Recycling, Elsevier, vol. 54(1), pages 62-72.
    11. Kaya, Tolga & Kahraman, Cengiz, 2010. "Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul," Energy, Elsevier, vol. 35(6), pages 2517-2527.
    12. Ramirez-Rosado, Ignacio J. & Fernandez-Jimenez, L. Alfredo & Monteiro, Claudio & Garcia-Garrido, Eduardo & Zorzano-Santamaria, Pedro, 2011. "Spatial long-term forecasting of small power photovoltaic systems expansion," Renewable Energy, Elsevier, vol. 36(12), pages 3499-3506.
    13. Niknam, Taher & Meymand, Hamed Zeinoddini & Mojarrad, Hasan Doagou, 2011. "A practical multi-objective PSO algorithm for optimal operation management of distribution network with regard to fuel cell power plants," Renewable Energy, Elsevier, vol. 36(5), pages 1529-1544.
    14. Zangeneh, Ali & Jadid, Shahram & Rahimi-Kian, Ashkan, 2009. "Promotion strategy of clean technologies in distributed generation expansion planning," Renewable Energy, Elsevier, vol. 34(12), pages 2765-2773.
    15. Morini, Mirko & Pinelli, Michele & Spina, Pier Ruggero & Venturini, Mauro, 2013. "Optimal allocation of thermal, electric and cooling loads among generation technologies in household applications," Applied Energy, Elsevier, vol. 112(C), pages 205-214.
    16. Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher, 2012. "Multi-operation management of a typical micro-grids using Particle Swarm Optimization: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1268-1281.
    17. Dzene, Ilze & Rošā, Marika & Blumberga, Dagnija, 2011. "How to select appropriate measures for reductions in negative environmental impact? Testing a screening method on a regional energy system," Energy, Elsevier, vol. 36(4), pages 1878-1883.
    18. Carpaneto, E. & Lazzeroni, P. & Repetto, M., 2015. "Optimal integration of solar energy in a district heating network," Renewable Energy, Elsevier, vol. 75(C), pages 714-721.
    19. Haibin Cao & Peng Jiang & Ming Zeng, 2021. "A Novel Comprehensive Benefit Evaluation of IEGES Based on the TOPSIS Optimized by MEE Method," Energies, MDPI, vol. 14(3), pages 1-19, February.
    20. Hu, Xiao & Zhang, Heng & Chen, Dongwen & Li, Yong & Wang, Li & Zhang, Feng & Cheng, Haozhong, 2020. "Multi-objective planning for integrated energy systems considering both exergy efficiency and economy," Energy, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4777-:d:298117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.