IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4722-d296584.html
   My bibliography  Save this article

Feasibility Study of Integrating Renewable Energy Generation System in Sark Island to Reduce Energy Generation Cost and CO 2 Emissions

Author

Listed:
  • Shamir Robinson

    (School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK)

  • Savvas Papadopoulos

    (School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK)

  • Eulalia Jadraque Gago

    (School of Civil Engineering, University of Granada, 18071 Granada, Spain)

  • Tariq Muneer

    (School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK)

Abstract

The island of Sark, located in the English Channel, has endured an electricity distribution crisis for the past few years, resulting in high electricity costs almost six times higher than UK mainland energy prices. This article is focused on a methodology for finding the best renewable energy system with the lowest levelized cost of energy (LCOE) in comparison to the current energy rate of 66 p/kWh. Three different main cases of study have been compared in performance for different levels of renewable energy integration and energy storage, evaluating the estimated size of the system, installation cost and CO 2 emissions. The results, which depend on the assumptions outlined, show that Case 2 renewable energy generation system is the most suitable in terms of reduction of CO 2 emissions and expected earnings from a lower LCOE. Uncertainty in the results could be minimized if actual data from the island is made available by following the same methodology to find the best solution to the island’s current energy generation problem. Due to non-available data for the load profiles and wind velocity a set of assumption were required to be implemented. As such, two different load profiles were selected—one with a peak of energy consumption in winter and the other with a summer peak.

Suggested Citation

  • Shamir Robinson & Savvas Papadopoulos & Eulalia Jadraque Gago & Tariq Muneer, 2019. "Feasibility Study of Integrating Renewable Energy Generation System in Sark Island to Reduce Energy Generation Cost and CO 2 Emissions," Energies, MDPI, vol. 12(24), pages 1-31, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4722-:d:296584
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4722/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4722/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Case study feasibility analysis of renewable energy supply options for small to medium-sized tourist accommodations," Renewable Energy, Elsevier, vol. 34(4), pages 1134-1144.
    2. Jovanović, Saša & Savić, Slobodan & Bojić, Milorad & Djordjević, Zorica & Nikolić, Danijela, 2015. "The impact of the mean daily air temperature change on electricity consumption," Energy, Elsevier, vol. 88(C), pages 604-609.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Batara Surya & Andi Muhibuddin & Seri Suriani & Emil Salim Rasyidi & Baharuddin Baharuddin & Andi Tenri Fitriyah & Herminawaty Abubakar, 2021. "Economic Evaluation, Use of Renewable Energy, and Sustainable Urban Development Mamminasata Metropolitan, Indonesia," Sustainability, MDPI, vol. 13(3), pages 1-45, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhawani Ghimire & Umaporn Muneenam & Kuaanan Techato, 2024. "Preference on Renewal Energy by Operators of Tourist Standard Hotels in Kathmandu, Nepal," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 277-286, March.
    2. Yasser Maklad, 2014. "Quantification and Costing of Domestic Electricity Generation for Armidale, New South Wales, Australia Utilising Micro Wind Turbines," International Journal of Energy Economics and Policy, Econjournals, vol. 4(2), pages 208-219.
    3. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    4. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    5. Fengchang Jiang & Haiyan Xie & Oliver Ellen, 2018. "Hybrid Energy System with Optimized Storage for Improvement of Sustainability in a Small Town," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    6. Li, Xian-Xiang, 2018. "Linking residential electricity consumption and outdoor climate in a tropical city," Energy, Elsevier, vol. 157(C), pages 734-743.
    7. Kusakana, Kanzumba, 2014. "Techno-economic analysis of off-grid hydrokinetic-based hybrid energy systems for onshore/remote area in South Africa," Energy, Elsevier, vol. 68(C), pages 947-957.
    8. Aagreh, Yaser & Al-Ghzawi, Audai, 2013. "Feasibility of utilizing renewable energy systems for a small hotel in Ajloun city, Jordan," Applied Energy, Elsevier, vol. 103(C), pages 25-31.
    9. Chen Zhang & Hua Liao & Zhifu Mi, 2019. "Climate impacts: temperature and electricity consumption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1259-1275, December.
    10. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    11. Krumdieck, Susan & Hamm, Andreas, 2009. "Strategic analysis methodology for energy systems with remote island case study," Energy Policy, Elsevier, vol. 37(9), pages 3301-3313, September.
    12. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Saad M. Abdullah & Makbul A. Ramli, 2023. "Sizing of Hybrid PV/Battery/Wind/Diesel Microgrid System Using an Improved Decomposition Multi-Objective Evolutionary Algorithm Considering Uncertainties and Battery Degradation," Sustainability, MDPI, vol. 15(14), pages 1-38, July.
    13. Yuanzheng Li & Wenjing Wang & Yating Wang & Yashu Xin & Tian He & Guosong Zhao, 2020. "A Review of Studies Involving the Effects of Climate Change on the Energy Consumption for Building Heating and Cooling," IJERPH, MDPI, vol. 18(1), pages 1-18, December.
    14. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    15. Craig, Christopher A. & Feng, Song, 2017. "Exploring utility organization electricity generation, residential electricity consumption, and energy efficiency: A climatic approach," Applied Energy, Elsevier, vol. 185(P1), pages 779-790.
    16. Doljak, Dejan & Stanojević, Gorica, 2017. "Evaluation of natural conditions for site selection of ground-mounted photovoltaic power plants in Serbia," Energy, Elsevier, vol. 127(C), pages 291-300.
    17. Li, Zhe & Boyle, Fergal & Reynolds, Anthony, 2012. "Domestic application of micro wind turbines in Ireland: Investigation of their economic viability," Renewable Energy, Elsevier, vol. 41(C), pages 64-74.
    18. Bigerna, Simona, 2018. "Estimating temperature effects on the Italian electricity market," Energy Policy, Elsevier, vol. 118(C), pages 257-269.
    19. Gang Chen & Qingchang Hu & Jin Wang & Xu Wang & Yuyu Zhu, 2023. "Machine-Learning-Based Electric Power Forecasting," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    20. Dhirasasna, NiNa & Sahin, Oz, 2021. "A system dynamics model for renewable energy technology adoption of the hotel sector," Renewable Energy, Elsevier, vol. 163(C), pages 1994-2007.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4722-:d:296584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.