IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4582-d293071.html
   My bibliography  Save this article

Experimental Investigation of a 10 MW Prototype Kaplan Turbine during Start-Up Operation

Author

Listed:
  • Arash Soltani Dehkharqani

    (Division of Fluid and Experimental Mechanics, Luleå University of Technology, SE-971 87 Luleå, Sweden)

  • Fredrik Engström

    (Division of Fluid and Experimental Mechanics, Luleå University of Technology, SE-971 87 Luleå, Sweden)

  • Jan-Olov Aidanpää

    (Division of Product and Production Development, Luleå University of Technology, SE-971 87 Luleå, Sweden)

  • Michel J. Cervantes

    (Division of Fluid and Experimental Mechanics, Luleå University of Technology, SE-971 87 Luleå, Sweden)

Abstract

An increase in the start/stop cycles of hydraulic turbines due to the penetration of intermittent renewable energy sources is important. Hydraulic instabilities that occur in hydraulic turbines during start/stops may cause structural issues in the turbine components. High-stress fluctuations on the runner blades are expected during start-ups due to the unsteady pressure loading on the runner blades. This paper presents experiments performed on a 10 MW prototype Kaplan turbine at the Porjus Hydropower Center during a start-up cycle. Synchronized unsteady pressure and strain measurements on a runner blade and axial, bending (in two directions) and torsion strain measurements on the shaft were performed. In addition, the general parameters of the turbine (e.g., rotational speed, guide vane opening and runner blade angle) were acquired. Low-frequency fluctuations (0–15 Hz) were observed in the pressure data on the runner blade after opening the guide vanes from the completely closed position. A higher strain value was observed on the strain gauges installed on the runner blade near the hub (200–500 μ m / m ) compared to the ones near the shroud at the leading and trailing edge. The strain fluctuation level on the shaft decreased after loading the generator by further opening the guide vanes. Higher fluctuations were observed in the torsion strain compared to axial and bending strain. In addition, the torsion strain peak-to-peak value reached 12 times its corresponding value at 61% guide vane opening.

Suggested Citation

  • Arash Soltani Dehkharqani & Fredrik Engström & Jan-Olov Aidanpää & Michel J. Cervantes, 2019. "Experimental Investigation of a 10 MW Prototype Kaplan Turbine during Start-Up Operation," Energies, MDPI, vol. 12(23), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4582-:d:293071
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4582/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4582/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Presas, Alexandre & Luo, Yongyao & Wang, Zhengwei & Guo, Bao, 2019. "Fatigue life estimation of Francis turbines based on experimental strain measurements: Review of the actual data and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 96-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grzegorz Peczkis & Piotr Wiśniewski & Andriy Zahorulko, 2021. "Experimental and Numerical Studies on the Influence of Blade Number in a Small Water Turbine," Energies, MDPI, vol. 14(9), pages 1-15, May.
    2. Shiraghaee, Shahab & Sundström, Joel & Raisee, Mehrdad & Cervantes, Michel J., 2024. "Extending the operating range of axial turbines with the protrusion of radially adjustable flat plates: An experimental investigation," Renewable Energy, Elsevier, vol. 225(C).
    3. Raluca Gabriela Iovănel & Arash Soltani Dehkharqani & Michel Jose Cervantes, 2022. "Numerical Simulation of a Kaplan Prototype during Speed-No-Load Operation," Energies, MDPI, vol. 15(14), pages 1-18, July.
    4. Dandan Yan & Haiqiang Luo & Weiqiang Zhao & Yibin Wu & Lingjiu Zhou & Xiaofu Fan & Zhengwei Wang, 2024. "Inner Flow Analysis of Kaplan Turbine under Off-Cam Conditions," Energies, MDPI, vol. 17(11), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafel Roig & Xavier Sánchez-Botello & Xavier Escaler & Berhanu Mulu & Carl-Maikel Högström, 2022. "On the Rotating Vortex Rope and Its Induced Structural Response in a Kaplan Turbine Model," Energies, MDPI, vol. 15(17), pages 1-19, August.
    2. Wei-Hua Hu & De-Hui Tang & Ming Wang & Jun-Le Liu & Zuo-Hua Li & Wei Lu & Jun Teng & Samir Said & Rolf. G. Rohrmann, 2020. "Resonance Monitoring of a Horizontal Wind Turbine by Strain-Based Automated Operational Modal Analysis," Energies, MDPI, vol. 13(3), pages 1-21, January.
    3. Haixia Yang & Qilian He & Xingxing Huang & Mengqi Yang & Huili Bi & Zhengwei Wang, 2022. "Experimental and Numerical Investigation of Rotor–Stator Interaction in a Large Prototype Pump–Turbine in Turbine Mode," Energies, MDPI, vol. 15(15), pages 1-24, July.
    4. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Pham, Quang Hung & Gagnon, Martin & Antoni, Jérôme & Tahan, Antoine & Monette, Christine, 2022. "Prediction of hydroelectric turbine runner strain signal via cyclostationary decomposition and kriging interpolation," Renewable Energy, Elsevier, vol. 182(C), pages 998-1011.
    6. Raluca Gabriela Iovănel & Arash Soltani Dehkharqani & Diana Maria Bucur & Michel Jose Cervantes, 2022. "Numerical Simulation and Experimental Validation of a Kaplan Prototype Turbine Operating on a Cam Curve," Energies, MDPI, vol. 15(11), pages 1-24, June.
    7. Pham, Quang Hung & Gagnon, Martin & Antoni, Jérôme & Tahan, Antoine & Monette, Christine, 2021. "Rainflow-counting matrix interpolation over different operating conditions for hydroelectric turbine fatigue assessment," Renewable Energy, Elsevier, vol. 172(C), pages 465-476.
    8. Zhou, Xing & Wu, Hegao & Cheng, Li & Huang, Quanshui & Shi, Changzheng, 2023. "A new draft tube shape optimisation methodology of introducing inclined conical diffuser in hydraulic turbine," Energy, Elsevier, vol. 265(C).
    9. Buchao Xu & Weiqiang Zhao & Wenhua Lin & Zhongyu Mao & Ran Tao & Zhengwei Wang, 2022. "The Influence of Different Operating Conditions on the Support Bracket Stress in Pumped Storage Units," Energies, MDPI, vol. 15(6), pages 1-15, March.
    10. Dollon, Q. & Antoni, J. & Tahan, A. & Gagnon, M. & Monette, C., 2021. "Operational Modal Analysis of hydroelectric turbines using an order based likelihood approach," Renewable Energy, Elsevier, vol. 165(P1), pages 799-811.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4582-:d:293071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.