IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4343-d287060.html
   My bibliography  Save this article

Identification and Quantification of Uncertainty Components in Gaseous and Particle Emission Measurements of a Moped

Author

Listed:
  • Barouch Giechaskiel

    (European Commission – Joint Research Centre, 21027 Ispra, Italy)

  • Alessandro A. Zardini

    (European Commission – Joint Research Centre, 21027 Ispra, Italy)

  • Tero Lähde

    (European Commission – Joint Research Centre, 21027 Ispra, Italy)

  • Michael Clairotte

    (European Commission – Joint Research Centre, 21027 Ispra, Italy)

  • Fabrizio Forloni

    (European Commission – Joint Research Centre, 21027 Ispra, Italy)

  • Yannis Drossinos

    (European Commission – Joint Research Centre, 21027 Ispra, Italy)

Abstract

The recent Euro 4 and 5 environmental steps for L-category vehicles (e.g., mopeds, motorcycles) were mainly designed to reduce the emissions of particulate matter and ozone precursors, such as nitrogen oxides and hydrocarbons. However, the corresponding engine, combustion, and aftertreatment improvements will not necessarily reduce the solid particle number (SPN) emissions, suggesting that a SPN regulation may be necessary in the future. At the same time, there are concerns whether the current SPN regulations of passenger cars can be transferred to L-category vehicles. In this study we quantified the errors and uncertainties in emission measurements, focusing on SPN. We summarized the sources of uncertainty related to emission measurements and experimentally quantified the contribution of each uncertainty component to the final results. For this reason, gas analyzers and SPN instruments with lower cut-off sizes of 4 nm, 10 nm, and 23 nm were sampling both from the tailpipe, and from the dilution tunnel having the transfer tube in closed or open configuration (i.e., open at the tailpipe side). The results showed that extracting from the tailpipe 23–28% of the mean total exhaust flow (bleed off) resulted in a 24–31% (for CO 2 ) and 19–73% (for SPN) underestimation of the emissions measured at the dilution tunnel. Erroneous determination of the exhaust flow rate, especially at cold start, resulted in 2% (for CO 2 ) and 69–149% (for SPN) underestimation of the tailpipe emissions. Additionally, for SPN, particle losses in the transfer tube with the closed configuration decreased the SPN concentrations around 30%, mainly due to agglomeration at cold start. The main conclusion of this study is that the open configuration (or mixing tee) without any instruments measuring from the tailpipe is associated with better accuracy for mopeds, especially related to SPN measurements. In addition, we demonstrated that for this moped the particle emissions below 23 nm, the lower size currently prescribed in the passenger cars regulation, were as high as those above 23 nm; thus, a lower cut-off size is more appropriate.

Suggested Citation

  • Barouch Giechaskiel & Alessandro A. Zardini & Tero Lähde & Michael Clairotte & Fabrizio Forloni & Yannis Drossinos, 2019. "Identification and Quantification of Uncertainty Components in Gaseous and Particle Emission Measurements of a Moped," Energies, MDPI, vol. 12(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4343-:d:287060
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4343/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4343/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Valverde & Yosuke Kondo & Yoshinori Otsuki & Torsten Krenz & Anastasios Melas & Ricardo Suarez-Bertoa & Barouch Giechaskiel, 2023. "Measurement of Gaseous Exhaust Emissions of Light-Duty Vehicles in Preparation for Euro 7: A Comparison of Portable and Laboratory Instrumentation," Energies, MDPI, vol. 16(6), pages 1-20, March.
    2. Barouch Giechaskiel, 2020. "Gaseous and Particulate Emissions of a Euro 4 Motorcycle and Effect of Driving Style and Open or Closed Sampling Configuration," Sustainability, MDPI, vol. 12(21), pages 1-12, November.
    3. Barouch Giechaskiel & Tero Lähde & Sawan Gandi & Stefan Keller & Philipp Kreutziger & Athanasios Mamakos, 2020. "Assessment of 10-nm Particle Number (PN) Portable Emissions Measurement Systems (PEMS) for Future Regulations," IJERPH, MDPI, vol. 17(11), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4343-:d:287060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.