IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4103-d280879.html
   My bibliography  Save this article

Secondary Flow and Endwall Optimization of a Transonic Turbine

Author

Listed:
  • Abdul Rehman

    (School of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, China)

  • Bo Liu

    (School of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, China
    Shaanxi Key Laboratory of Internal Aerodynamics in Aero-Engine, Xi’an 710072, China)

  • Muhammad Afzaal Asghar

    (School of Energy and Power Engineering, Beihang University, Beijing 100191, China)

Abstract

A detailed numerical analysis of secondary flows in a transonic turbine is presented in this paper. The turbine stage is optimized by mitigating secondary flow through the method of non-axisymmetric endwall design. An automated optimization platform of NUMECA/Design3D was coupled with Euranus as a flow solver for the numerical investigation. The contoured endwalls of the stator and the rotor hub were designed based on equidistant Bézier curves along the camber line in the blade channel. The initial design samples were ten times the number of the design variables, and were generated through the LHS method for database generation. The optimization of the endwalls was achieved by using a state-of-the-art multi-objective optimization algorithm, NSGA-II, connected with the BPNN to increase the isentropic efficiency and decrease the secondary kinetic energy, while the mass flow and the degree of reaction were constrained to remain on the datum value as in the original geometry. The individual optimization of the hub endwalls of the stator and the rotor produced an increase in the efficiency of 0.27% and 0.25%, respectively, resulting in a cumulative improvement of 0.46% in the efficiency. The increase in the performance was analyzed at part-load conditions, and it was further confirmed through unsteady simulations.

Suggested Citation

  • Abdul Rehman & Bo Liu & Muhammad Afzaal Asghar, 2019. "Secondary Flow and Endwall Optimization of a Transonic Turbine," Energies, MDPI, vol. 12(21), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4103-:d:280879
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chengyong Zhu & Tongguang Wang & Jianghai Wu, 2019. "Numerical Investigation of Passive Vortex Generators on a Wind Turbine Airfoil Undergoing Pitch Oscillations," Energies, MDPI, vol. 12(4), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamza Fawzy & Qun Zheng & Naseem Ahmad & Yuting Jiang, 2020. "Optimization of A Swirl with Impingement Compound Cooling Unit for A Gas Turbine Blade Leading Edge," Energies, MDPI, vol. 13(1), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Chengyong & Qiu, Yingning & Wang, Tongguang, 2021. "Dynamic stall of the wind turbine airfoil and blade undergoing pitch oscillations: A comparative study," Energy, Elsevier, vol. 222(C).
    2. Zhu, Chengyong & Chen, Jie & Wu, Jianghai & Wang, Tongguang, 2019. "Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators," Energy, Elsevier, vol. 189(C).
    3. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    4. Zhu, Chengyong & Chen, Jie & Qiu, Yingning & Wang, Tongguang, 2021. "Numerical investigation into rotational augmentation with passive vortex generators on the NREL Phase VI blade," Energy, Elsevier, vol. 223(C).
    5. Mustafa Özden & Mustafa Serdar Genç & Kemal Koca, 2023. "Passive Flow Control Application Using Single and Double Vortex Generator on S809 Wind Turbine Airfoil," Energies, MDPI, vol. 16(14), pages 1-17, July.
    6. Zhu, Chengyong & Feng, Yi & Shen, Xiang & Dang, Zhigao & Chen, Jie & Qiu, Yingning & Feng, Yanhui & Wang, Tongguang, 2023. "Effects of the height and chordwise installation of the vane-type vortex generators on the unsteady aerodynamics of a wind turbine airfoil undergoing dynamic stall," Energy, Elsevier, vol. 266(C).
    7. Chengyong Zhu & Tongguang Wang & Jie Chen & Wei Zhong, 2020. "Effect of Single-Row and Double-Row Passive Vortex Generators on the Deep Dynamic Stall of a Wind Turbine Airfoil," Energies, MDPI, vol. 13(10), pages 1-13, May.
    8. Chengyong Zhu & Tongguang Wang & Wei Zhong, 2019. "Combined Effect of Rotational Augmentation and Dynamic Stall on a Horizontal Axis Wind Turbine," Energies, MDPI, vol. 12(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4103-:d:280879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.