IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4046-d279767.html
   My bibliography  Save this article

Investigating Primary Factors Affecting Electricity Consumption in Non-Residential Buildings Using a Data-Driven Approach

Author

Listed:
  • Sooyoun Cho

    (Department of Architectural Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea)

  • Jeehang Lee

    (Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea)

  • Jumi Baek

    (Department of Architectural Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea)

  • Gi-Seok Kim

    (Center for Sustainable Buildings, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea)

  • Seung-Bok Leigh

    (Department of Architectural Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea)

Abstract

Although the latest energy-efficient buildings use a large number of sensors and measuring instruments to predict consumption more accurately, it is generally not possible to identify which data are the most valuable or key for analysis among the tens of thousands of data points. This study selected the electric energy as a subset of total building energy consumption because it accounts for more than 65% of the total building energy consumption, and identified the variables that contribute to electric energy use. However, this study aimed to confirm data from a building using clustering in machine learning, instead of a calculation method from engineering simulation, to examine the variables that were identified and determine whether these variables had a strong correlation with energy consumption. Three different methods confirmed that the major variables related to electric energy consumption were significant. This research has significance because it was able to identify the factors in electric energy, accounting for more than half of the total building energy consumption, that had a major effect on energy consumption and revealed that these key variables alone, not the default values of many different items in simulation analysis, can ensure the reliable prediction of energy consumption.

Suggested Citation

  • Sooyoun Cho & Jeehang Lee & Jumi Baek & Gi-Seok Kim & Seung-Bok Leigh, 2019. "Investigating Primary Factors Affecting Electricity Consumption in Non-Residential Buildings Using a Data-Driven Approach," Energies, MDPI, vol. 12(21), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4046-:d:279767
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4046/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4046/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hao Wang & Pen-Chi Chiang & Yanpeng Cai & Chunhui Li & Xuan Wang & Tse-Lun Chen & Shiming Wei & Qian Huang, 2018. "Application of Wall and Insulation Materials on Green Building: A Review," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
    2. Muhammad Fayaz & DoHyeun Kim, 2018. "Energy Consumption Optimization and User Comfort Management in Residential Buildings Using a Bat Algorithm and Fuzzy Logic," Energies, MDPI, vol. 11(1), pages 1-22, January.
    3. Tronchin, Lamberto & Manfren, Massimiliano & James, Patrick AB., 2018. "Linking design and operation performance analysis through model calibration: Parametric assessment on a Passive House building," Energy, Elsevier, vol. 165(PA), pages 26-40.
    4. Fan, Cheng & Xiao, Fu & Yan, Chengchu & Liu, Chengliang & Li, Zhengdao & Wang, Jiayuan, 2019. "A novel methodology to explain and evaluate data-driven building energy performance models based on interpretable machine learning," Applied Energy, Elsevier, vol. 235(C), pages 1551-1560.
    5. Menezes, Anna Carolina & Cripps, Andrew & Bouchlaghem, Dino & Buswell, Richard, 2012. "Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap," Applied Energy, Elsevier, vol. 97(C), pages 355-364.
    6. Harish, V.S.K.V. & Kumar, Arun, 2016. "A review on modeling and simulation of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1272-1292.
    7. Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
    8. Antonio Attanasio & Marco Savino Piscitelli & Silvia Chiusano & Alfonso Capozzoli & Tania Cerquitelli, 2019. "Towards an Automated, Fast and Interpretable Estimation Model of Heating Energy Demand: A Data-Driven Approach Exploiting Building Energy Certificates," Energies, MDPI, vol. 12(7), pages 1-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuting Qi & Queena Qian & Frits Meijer & Henk Visscher, 2020. "Causes of Quality Failures in Building Energy Renovation Projects of Northern China: A Review and Empirical Study," Energies, MDPI, vol. 13(10), pages 1-19, May.
    2. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    3. Jihoon Jang & Joosang Lee & Eunjo Son & Kyungyong Park & Gahee Kim & Jee Hang Lee & Seung-Bok Leigh, 2019. "Development of an Improved Model to Predict Building Thermal Energy Consumption by Utilizing Feature Selection," Energies, MDPI, vol. 12(21), pages 1-20, November.
    4. Constantinos A. Balaras, 2022. "Building Energy Audits—Diagnosis and Retrofitting towards Decarbonization and Sustainable Cities," Energies, MDPI, vol. 15(6), pages 1-4, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suzana Domjan & Sašo Medved & Boštjan Černe & Ciril Arkar, 2019. "Fast Modelling of nZEB Metrics of Office Buildings Built with Advanced Glass and BIPV Facade Structures," Energies, MDPI, vol. 12(16), pages 1-18, August.
    2. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    3. Bai, Yefei & Yu, Cong & Pan, Wei, 2024. "Systematic examination of energy performance gap in low-energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    4. Xing Shi & Binghui Si & Jiangshan Zhao & Zhichao Tian & Chao Wang & Xing Jin & Xin Zhou, 2019. "Magnitude, Causes, and Solutions of the Performance Gap of Buildings: A Review," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    5. Wate, P. & Iglesias, M. & Coors, V. & Robinson, D., 2020. "Framework for emulation and uncertainty quantification of a stochastic building performance simulator," Applied Energy, Elsevier, vol. 258(C).
    6. Ohlsson, K.E. Anders & Olofsson, Thomas, 2021. "Benchmarking the practice of validation and uncertainty analysis of building energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    7. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Grillone, Benedetto & Danov, Stoyan & Sumper, Andreas & Cipriano, Jordi & Mor, Gerard, 2020. "A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Sha, Huajing & Xu, Peng & Yang, Zhiwei & Chen, Yongbao & Tang, Jixu, 2019. "Overview of computational intelligence for building energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 76-90.
    10. Massimiliano Manfren & Maurizio Sibilla & Lamberto Tronchin, 2021. "Energy Modelling and Analytics in the Built Environment—A Review of Their Role for Energy Transitions in the Construction Sector," Energies, MDPI, vol. 14(3), pages 1-29, January.
    11. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    12. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    13. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    14. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    15. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
    16. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    17. Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
    18. Tian, Shen & Shao, Shuangquan & Liu, Bin, 2019. "Investigation on transient energy consumption of cold storages: Modeling and a case study," Energy, Elsevier, vol. 180(C), pages 1-9.
    19. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    20. Habtamu Tkubet Ebuy & Hind Bril El Haouzi & Riad Benelmir & Remi Pannequin, 2023. "Occupant Behavior Impact on Building Sustainability Performance: A Literature Review," Sustainability, MDPI, vol. 15(3), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4046-:d:279767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.