IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3983-d278276.html
   My bibliography  Save this article

A Stochastic-CVaR Optimization Model for CCHP Micro-Grid Operation with Consideration of Electricity Market, Wind Power Accommodation and Multiple Demand Response Programs

Author

Listed:
  • Yuwei Wang

    (Department of Economic Management, North China Electric Power University, Baoding 071003, China)

  • Yuanjuan Yang

    (Department of Economic Management, North China Electric Power University, Baoding 071003, China)

  • Liu Tang

    (Department of Economic Management, North China Electric Power University, Baoding 071003, China)

  • Wei Sun

    (Department of Economic Management, North China Electric Power University, Baoding 071003, China)

  • Huiru Zhao

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

Combined cooling, heating and power (CCHP) micro-grids have the advantage of high energy efficiency, and can be integrated with renewable energies and demand response programs (DRPs). With the deepening of electricity market (EM) reforms, how to carry out operation optimization under EM circumstances will become a key problem for CCHP micro-grid development. This paper proposed a stochastic-CVaR (conditional value at risk) optimization model for CCHP micro-grid operation with consideration of EM participation, wind power accommodation and multiple DRPs. Specifically, based on the stochastic scenarios for EM clearing prices and wind power outputs uncertainties, the stochastic optimization method was applied to ensure the realization of operational cost minimization and wind power accommodation; the CVaR method was implemented to control the potential risk of operational cost increase. Moreover, by introducing multiple DRPs, the electrical, thermal and cooling loads can be transformed as flexible sources for CCHP micro-grid operation. Simulations were performed to show the following outcomes: (1) by applying the proposed stochastic-CVaR approach and considering multiple DRPs, CCHP micro-grid operation can reach better performance in terms of cost minimization, risk control and wind power accommodation etc.; (2) higher energy utilization efficiency can be achieved by coordinately optimizing EM power biddings; etc.

Suggested Citation

  • Yuwei Wang & Yuanjuan Yang & Liu Tang & Wei Sun & Huiru Zhao, 2019. "A Stochastic-CVaR Optimization Model for CCHP Micro-Grid Operation with Consideration of Electricity Market, Wind Power Accommodation and Multiple Demand Response Programs," Energies, MDPI, vol. 12(20), pages 1-33, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3983-:d:278276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3983/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3983/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chahartaghi, Mahmood & Sheykhi, Mohammad, 2019. "Energy, environmental and economic evaluations of a CCHP system driven by Stirling engine with helium and hydrogen as working gases," Energy, Elsevier, vol. 174(C), pages 1251-1266.
    2. Shams, Mohammad H. & Shahabi, Majid & Khodayar, Mohammad E., 2018. "Stochastic day-ahead scheduling of multiple energy Carrier microgrids with demand response," Energy, Elsevier, vol. 155(C), pages 326-338.
    3. Narayan, Apurva & Ponnambalam, Kumaraswamy, 2017. "Risk-averse stochastic programming approach for microgrid planning under uncertainty," Renewable Energy, Elsevier, vol. 101(C), pages 399-408.
    4. Grover-Silva, Etta & Heleno, Miguel & Mashayekh, Salman & Cardoso, Gonçalo & Girard, Robin & Kariniotakis, George, 2018. "A stochastic optimal power flow for scheduling flexible resources in microgrids operation," Applied Energy, Elsevier, vol. 229(C), pages 201-208.
    5. Varasteh, Farid & Nazar, Mehrdad Setayesh & Heidari, Alireza & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Distributed energy resource and network expansion planning of a CCHP based active microgrid considering demand response programs," Energy, Elsevier, vol. 172(C), pages 79-105.
    6. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2018. "Effect of load following strategies, hardware, and thermal load distribution on stand-alone hybrid CCHP systems," Applied Energy, Elsevier, vol. 220(C), pages 735-753.
    7. Afzali, Sayyed Faridoddin & Mahalec, Vladimir, 2018. "Novel performance curves to determine optimal operation of CCHP systems," Applied Energy, Elsevier, vol. 226(C), pages 1009-1036.
    8. Yan, Yi & Zhang, Chenghui & Li, Ke & Wang, Zhen, 2018. "An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage," Applied Energy, Elsevier, vol. 210(C), pages 1151-1166.
    9. Ji, L. & Niu, D.X. & Huang, G.H., 2014. "An inexact two-stage stochastic robust programming for residential micro-grid management-based on random demand," Energy, Elsevier, vol. 67(C), pages 186-199.
    10. Gu, Wei & Lu, Shuai & Wu, Zhi & Zhang, Xuesong & Zhou, Jinhui & Zhao, Bo & Wang, Jun, 2017. "Residential CCHP microgrid with load aggregator: Operation mode, pricing strategy, and optimal dispatch," Applied Energy, Elsevier, vol. 205(C), pages 173-186.
    11. Najafi, Arsalan & Falaghi, Hamid & Contreras, Javier & Ramezani, Maryam, 2016. "Medium-term energy hub management subject to electricity price and wind uncertainty," Applied Energy, Elsevier, vol. 168(C), pages 418-433.
    12. Davatgaran, Vahid & Saniei, Mohsen & Mortazavi, Seyed Saeidollah, 2018. "Optimal bidding strategy for an energy hub in energy market," Energy, Elsevier, vol. 148(C), pages 482-493.
    13. Wang, Luhao & Zhang, Bingying & Li, Qiqiang & Song, Wen & Li, Guanguan, 2019. "Robust distributed optimization for energy dispatch of multi-stakeholder multiple microgrids under uncertainty," Applied Energy, Elsevier, vol. 255(C).
    14. Wang, Luhao & Li, Qiqiang & Ding, Ran & Sun, Mingshun & Wang, Guirong, 2017. "Integrated scheduling of energy supply and demand in microgrids under uncertainty: A robust multi-objective optimization approach," Energy, Elsevier, vol. 130(C), pages 1-14.
    15. Ji, Ling & Huang, Guohe & Xie, Yulei & Zhou, Yong & Zhou, Jifang, 2018. "Robust cost-risk tradeoff for day-ahead schedule optimization in residential microgrid system under worst-case conditional value-at-risk consideration," Energy, Elsevier, vol. 153(C), pages 324-337.
    16. Jadidbonab, Mohammad & Babaei, Ebrahim & Mohammadi-ivatloo, Behnam, 2019. "CVaR-constrained scheduling strategy for smart multi carrier energy hub considering demand response and compressed air energy storage," Energy, Elsevier, vol. 174(C), pages 1238-1250.
    17. Xiaofeng Dong & Chao Quan & Tong Jiang, 2018. "Optimal Planning of Integrated Energy Systems Based on Coupled CCHP," Energies, MDPI, vol. 11(10), pages 1-27, October.
    18. Dariush Khezrimotlagh & Yao Chen, 2018. "The Optimization Approach," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 107-134, Springer.
    19. Zhou, Yizhou & Wei, Zhinong & Sun, Guoqiang & Cheung, Kwok W. & Zang, Haixiang & Chen, Sheng, 2018. "A robust optimization approach for integrated community energy system in energy and ancillary service markets," Energy, Elsevier, vol. 148(C), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Carlos Oviedo Cepeda & German Osma-Pinto & Robin Roche & Cesar Duarte & Javier Solano & Daniel Hissel, 2020. "Design of a Methodology to Evaluate the Impact of Demand-Side Management in the Planning of Isolated/Islanded Microgrids," Energies, MDPI, vol. 13(13), pages 1-24, July.
    2. Li, Yanbin & Zhang, Feng & Li, Yun & Wang, Yuwei, 2021. "An improved two-stage robust optimization model for CCHP-P2G microgrid system considering multi-energy operation under wind power outputs uncertainties," Energy, Elsevier, vol. 223(C).
    3. Li, Bingkang & Zhao, Huiru & Wang, Xuejie & Zhao, Yihang & Zhang, Yuanyuan & Lu, Hao & Wang, Yuwei, 2022. "Distributionally robust offering strategy of the aggregator integrating renewable energy generator and energy storage considering uncertainty and connections between the mid-to-long-term and spot elec," Renewable Energy, Elsevier, vol. 201(P1), pages 400-417.
    4. Ethem Çanakoğlu & Esra Adıyeke, 2020. "Comparison of Electricity Spot Price Modelling and Risk Management Applications," Energies, MDPI, vol. 13(18), pages 1-22, September.
    5. Yanbin Li & Yanting Sun & Junjie Zhang & Feng Zhang, 2022. "Optimal Microgrid System Operating Strategy Considering Variable Wind Power Outputs and the Cooperative Game among Subsystem Operators," Energies, MDPI, vol. 15(18), pages 1-20, September.
    6. Yan Xiong & Jiakun Fang, 2022. "Co-Operative Optimization Framework for Energy Management Considering CVaR Assessment and Game Theory," Energies, MDPI, vol. 15(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yuwei & Tang, Liu & Yang, Yuanjuan & Sun, Wei & Zhao, Huiru, 2020. "A stochastic-robust coordinated optimization model for CCHP micro-grid considering multi-energy operation and power trading with electricity markets under uncertainties," Energy, Elsevier, vol. 198(C).
    2. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    3. Lingmin, Chen & Jiekang, Wu & Fan, Wu & Huiling, Tang & Changjie, Li & Yan, Xiong, 2020. "Energy flow optimization method for multi-energy system oriented to combined cooling, heating and power," Energy, Elsevier, vol. 211(C).
    4. Gao, Lei & Hwang, Yunho & Cao, Tao, 2019. "An overview of optimization technologies applied in combined cooling, heating and power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Yang, Jie & Ma, Tieding & Ma, Kai & Yang, Bo & Guerrero, Josep M. & Liu, Zhixin, 2021. "Trading mechanism and pricing strategy of integrated energy systems based on credit rating and Bayesian game," Energy, Elsevier, vol. 232(C).
    6. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    8. Bostan, Alireza & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "Optimal scheduling of distribution systems considering multiple downward energy hubs and demand response programs," Energy, Elsevier, vol. 190(C).
    9. Correa-Florez, Carlos Adrian & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Robust optimization for day-ahead market participation of smart-home aggregators," Applied Energy, Elsevier, vol. 229(C), pages 433-445.
    10. Nikmehr, Nima, 2020. "Distributed robust operational optimization of networked microgrids embedded interconnected energy hubs," Energy, Elsevier, vol. 199(C).
    11. Carlos Adrian Correa-Florez & Andrea Michiorri & Georges Kariniotakis, 2019. "Comparative Analysis of Adjustable Robust Optimization Alternatives for the Participation of Aggregated Residential Prosumers in Electricity Markets," Energies, MDPI, vol. 12(6), pages 1-27, March.
    12. Si, Fangyuan & Han, Yinghua & Zhao, Qiang & Wang, Jinkuan, 2020. "Cost-effective operation of the urban energy system with variable supply and demand via coordination of multi-energy flows," Energy, Elsevier, vol. 203(C).
    13. Yongli Wang & Haiyang Yu & Mingyue Yong & Yujing Huang & Fuli Zhang & Xiaohai Wang, 2018. "Optimal Scheduling of Integrated Energy Systems with Combined Heat and Power Generation, Photovoltaic and Energy Storage Considering Battery Lifetime Loss," Energies, MDPI, vol. 11(7), pages 1-21, June.
    14. Ma, Tengfei & Pei, Wei & Xiao, Hao & Kong, Li & Mu, Yunfei & Pu, Tianjiao, 2020. "The energy management strategies based on dynamic energy pricing for community integrated energy system considering the interactions between suppliers and users," Energy, Elsevier, vol. 211(C).
    15. Guo, Jiacheng & Liu, Zhijian & Wu, Xuan & Wu, Di & Zhang, Shicong & Yang, Xinyan & Ge, Hua & Zhang, Peiwen, 2022. "Two-layer co-optimization method for a distributed energy system combining multiple energy storages," Applied Energy, Elsevier, vol. 322(C).
    16. Mancarella, Pierluigi & Chicco, Gianfranco & Capuder, Tomislav, 2018. "Arbitrage opportunities for distributed multi-energy systems in providing power system ancillary services," Energy, Elsevier, vol. 161(C), pages 381-395.
    17. Rakipour, Davood & Barati, Hassan, 2019. "Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response," Energy, Elsevier, vol. 173(C), pages 384-399.
    18. Guan, Zhimin & Lu, Chunyan & Li, Yiming & Wang, Jiangjiang, 2023. "Chance-constrained optimization of hybrid solar combined cooling, heating and power system considering energetic, economic, environmental, and flexible performances," Renewable Energy, Elsevier, vol. 212(C), pages 908-920.
    19. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3983-:d:278276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.