IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3961-d277903.html
   My bibliography  Save this article

Simulation Study of Allied In-Situ Injection and Production for Enhancing Shale Oil Recovery and CO 2 Emission Control

Author

Listed:
  • Haiyang Yu

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China)

  • Songchao Qi

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China)

  • Zhewei Chen

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China)

  • Shiqing Cheng

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China)

  • Qichao Xie

    (Research Institute of Exploration and Development, Petro China Changqing Oilfield Company, Xi’an 710018, China)

  • Xuefeng Qu

    (Research Institute of Exploration and Development, Petro China Changqing Oilfield Company, Xi’an 710018, China)

Abstract

The global greenhouse effect makes carbon dioxide (CO 2 ) emission reduction an important task for the world, however, CO 2 can be used as injected fluid to develop shale oil reservoirs. Conventional water injection and gas injection methods cannot achieve desired development results for shale oil reservoirs. Poor injection capacity exists in water injection development, while the time of gas breakthrough is early and gas channeling is serious for gas injection development. These problems will lead to insufficient formation energy supplement, rapid energy depletion, and low ultimate recovery. Gas injection huff and puff (huff-n-puff), as another improved method, is applied to develop shale oil reservoirs. However, the shortcomings of huff-n-puff are the low sweep efficiency and poor performance for the late development of oilfields. Therefore, this paper adopts firstly the method of Allied In-Situ Injection and Production (AIIP) combined with CO 2 huff-n-puff to develop shale oil reservoirs. Based on the data of Shengli Oilfield, a dual-porosity and dual-permeability model in reservoir-scale is established. Compared with traditional CO 2 huff-n-puff and depletion method, the cumulative oil production of AIIP combined with CO 2 huff-n-puff increases by 13,077 and 17,450 m 3 respectively, indicating that this method has a good application prospect. Sensitivity analyses are further conducted, including injection volume, injection rate, soaking time, fracture half-length, and fracture spacing. The results indicate that injection volume, not injection rate, is the important factor affecting the performance. With the increment of fracture half-length and the decrement of fracture spacing, the cumulative oil production of the single well increases, but the incremental rate slows down gradually. With the increment of soaking time, cumulative oil production increases first and then decreases. These parameters have a relatively suitable value, which makes the performance better. This new method can not only enhance shale oil recovery, but also can be used for CO 2 emission control.

Suggested Citation

  • Haiyang Yu & Songchao Qi & Zhewei Chen & Shiqing Cheng & Qichao Xie & Xuefeng Qu, 2019. "Simulation Study of Allied In-Situ Injection and Production for Enhancing Shale Oil Recovery and CO 2 Emission Control," Energies, MDPI, vol. 12(20), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3961-:d:277903
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3961/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3961/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Haiyang & Rui, Zhenhua & Chen, Zhewei & Lu, Xin & Yang, Zhonglin & Liu, Junhui & Qu, Xuefeng & Patil, Shirish & Ling, Kegang & Lu, Jun, 2019. "Feasibility study of improved unconventional reservoir performance with carbonated water and surfactant," Energy, Elsevier, vol. 182(C), pages 135-147.
    2. Fanhui Zeng & Fan Peng & Jianchun Guo & Jianhua Xiang & Qingrong Wang & Jiangang Zhen, 2018. "A Transient Productivity Model of Fractured Wells in Shale Reservoirs Based on the Succession Pseudo-Steady State Method," Energies, MDPI, vol. 11(9), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianhong Zhu & Junbin Chen & Xiaoming Wang & Lingyi Fan & Xiangrong Nie, 2021. "Experimental Investigation on the Characteristic Mobilization and Remaining Oil Distribution under CO 2 Huff-n-Puff of Chang 7 Continental Shale Oil," Energies, MDPI, vol. 14(10), pages 1-18, May.
    2. Ganggang Hou & Xiaoli Ma & Wenyue Zhao & Pengxiang Diwu & Tongjing Liu & Jirui Hou, 2021. "Synergistic Modes and Enhanced Oil Recovery Mechanism of CO 2 Synergistic Huff and Puff," Energies, MDPI, vol. 14(12), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Sijia & Jiang, Lanlan & Cheng, Zucheng & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2021. "Experimental study on the CO2-decane displacement front behavior in high permeability sand evaluated by magnetic resonance imaging," Energy, Elsevier, vol. 217(C).
    2. Jia, Haowei & Yu, Haiyang & Wang, Songyang & Shi, Jianchao & Xie, Feifan & Wang, Songchen & Lu, Jun & Wang, Yang & Zhang, Fengyuan, 2024. "Investigation of CO2 microbubble assisted carbon sequestration and gravity-induced microbubble ripening in low permeability reservoirs," Applied Energy, Elsevier, vol. 373(C).
    3. Meng, Zhaohui & Zheng, Haimin & Qin, Fankai & Li, Anqi & Li, Huimin & Dong, Sijie & Song, Chao & Miao, Xinyang & Yue, Wenzheng & Zhao, Kun & Zhan, Honglei, 2023. "Mechanistic study of the effect of hydrocarbon unsaturation on the distribution state of water molecules at the oil-water interface by oblique incident reflectance difference technique," Energy, Elsevier, vol. 276(C).
    4. Yang, Renfeng & Jiang, Ruizhong & Guo, Sheng & Chen, Han & Tang, Shasha & Duan, Rui, 2021. "Analytical study on the Critical Water Cut for Water Plugging: Water cut increasing control and production enhancement," Energy, Elsevier, vol. 214(C).
    5. Huang, Feifei & Pu, Chunsheng & Gu, Xiaoyu & Ye, Zhengqin & Khan, Nasir & An, Jie & Wu, Feipeng & Liu, Jing, 2021. "Study of a low-damage efficient-imbibition fracturing fluid without flowback used for low-pressure tight reservoirs," Energy, Elsevier, vol. 222(C).
    6. Qiang Wang & Jifang Wan & Langfeng Mu & Ruichen Shen & Maria Jose Jurado & Yufeng Ye, 2020. "An Analytical Solution for Transient Productivity Prediction of Multi-Fractured Horizontal Wells in Tight Gas Reservoirs Considering Nonlinear Porous Flow Mechanisms," Energies, MDPI, vol. 13(5), pages 1-20, March.
    7. Chaturvedi, Krishna Raghav & Trivedi, Japan & Sharma, Tushar, 2020. "Single-step silica nanofluid for improved carbon dioxide flow and reduced formation damage in porous media for carbon utilization," Energy, Elsevier, vol. 197(C).
    8. Jianchao Cai & Zhien Zhang & Qinjun Kang & Harpreet Singh, 2019. "Recent Advances in Flow and Transport Properties of Unconventional Reservoirs," Energies, MDPI, vol. 12(10), pages 1-5, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3961-:d:277903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.