IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i1p162-d194846.html
   My bibliography  Save this article

Effect of Tip Clearance on Flow Field and Heat Transfer Characteristics in a Large Meridional Expansion Turbine

Author

Listed:
  • Fusheng Meng

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

  • Qun Zheng

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

  • Jie Gao

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

  • Weiliang Fu

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

Abstract

The large meridional expansion turbine stator leads to complex secondary flows and heat transfer characteristics in the blade endwall region, while the upstream tip clearance leakage flow of the rotor makes it more complex in flow and heat transfer. The influence of the upstream rotor tip clearance on the large meridian expansion stator is worth studying. The flow and heat transfer characteristics of the downstream large meridional expansion turbine stator were studied by comparing the tip leakage flow of 1.5-stage shrouded and unshrouded turbines using a three-dimensional Reynolds-Averaged Navier-Stokes (RANS) solver for viscous turbulent flows. Validation studies were performed to investigate the aerodynamics and heat transfer prediction ability of the shear stress transport (SST) turbulence model. The influence of different tip clearances of the rotor including unshrouded blade heights of 0%, 1% and 5% and a 1% shrouded blade height were investigated through numerical simulation. The results showed that the upper passage vortex separation was more serious and the separation, and attachment point of horseshoe vortex in the pressure side were significantly more advanced than that of non-expansion turbines. The tip leakage vortex obviously increased the negative incidence angle at the downstream inlet. Furthermore, the strength of the high heat transfer zone on the suction surface of the downstream stator was significantly increased, while that of the shrouded rotor decreased.

Suggested Citation

  • Fusheng Meng & Qun Zheng & Jie Gao & Weiliang Fu, 2019. "Effect of Tip Clearance on Flow Field and Heat Transfer Characteristics in a Large Meridional Expansion Turbine," Energies, MDPI, vol. 12(1), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:1:p:162-:d:194846
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/162/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/162/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ducoin, A. & Shadloo, M.S. & Roy, S., 2017. "Direct Numerical Simulation of flow instabilities over Savonius style wind turbine blades," Renewable Energy, Elsevier, vol. 105(C), pages 374-385.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bao Ngoc Tran & Haechang Jeong & Jun-Ho Kim & Jin-Soon Park & Changjo Yang, 2020. "Effects of Tip Clearance Size on Energy Performance and Pressure Fluctuation of a Tidal Propeller Turbine," Energies, MDPI, vol. 13(16), pages 1-18, August.
    2. Fusheng Meng & Qun Zheng & Jian Zhang, 2019. "Effects of Blade Fillet Structures on Flow Field and Surface Heat Transfer in a Large Meridional Expansion Turbine," Energies, MDPI, vol. 12(15), pages 1-19, August.
    3. Nishan Jain & Luis Bravo & Dokyun Kim & Muthuvel Murugan & Anindya Ghoshal & Frank Ham & Alison Flatau, 2020. "Massively Parallel Large Eddy Simulation of Rotating Turbomachinery for Variable Speed Gas Turbine Engine Operation," Energies, MDPI, vol. 13(3), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patel, Vimal & Eldho, T.I. & Prabhu, S.V., 2019. "Velocity and performance correction methodology for hydrokinetic turbines experimented with different geometry of the channel," Renewable Energy, Elsevier, vol. 131(C), pages 1300-1317.
    2. Zheng, Jiancai & Wang, Nina & Wan, Decheng & Strijhak, Sergei, 2023. "Numerical investigations of coupled aeroelastic performance of wind turbines by elastic actuator line model," Applied Energy, Elsevier, vol. 330(PB).
    3. Mohammadi, M. & Lakestani, M. & Mohamed, M.H., 2018. "Intelligent parameter optimization of Savonius rotor using Artificial Neural Network and Genetic Algorithm," Energy, Elsevier, vol. 143(C), pages 56-68.
    4. Zhenlong Wu & Can Li & Yihua Cao, 2019. "Numerical Simulation of Rotor–Wing Transient Interaction for a Tiltrotor in the Transition Mode," Mathematics, MDPI, vol. 7(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:1:p:162-:d:194846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.