IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3488-d265813.html
   My bibliography  Save this article

Solving the Coupled Aerodynamic and Thermal Problem for Modeling the Air Distribution Devices with Perforated Plates

Author

Listed:
  • Serhii Khovanskyi

    (Sumy State University, 2 Rymskogo-Korsakova St., 40007 Sumy, Ukraine)

  • Ivan Pavlenko

    (Sumy State University, 2 Rymskogo-Korsakova St., 40007 Sumy, Ukraine)

  • Jan Pitel

    (Technical University of Kosice, 1 Bayerova St., 08001 Presov, Slovakia)

  • Jana Mizakova

    (Technical University of Kosice, 1 Bayerova St., 08001 Presov, Slovakia)

  • Marek Ochowiak

    (Poznan University of Technology, 5 M. Sklodowska-Curie Sq., 60-965 Poznan, Poland)

  • Irina Grechka

    (National Technical University “Kharkiv Polytechnic Institute”, 2 Kyrpychova St., 61002 Kharkiv, Ukraine)

Abstract

The article is focused on the comprehensive analysis of the aerodynamics of air distribution devices with the combined heat and mass exchange, with the aim to improve the following hydro- and thermodynamic parameters of ventilation systems: flow rate, air velocity, hydraulic losses, and temperature. The inadequacy of the previously obtained characteristics has confirmed the need for more rational designs of air distribution systems. Consequently, the use of perforated plates was proposed to increase hydraulic losses for reducing the average velocity and ensuring a uniform distribution of the velocity field on the outlet of the device. The effectiveness of one of the five possible designs usage is confirmed by the results of numerical simulation. The coefficient of hydraulic losses decreased by 2.5–3.0 times, as well as the uniformity of the outlet velocity field for the air flow being provided. Based on the three-factor factorial experiment, the linear mathematical model was obtained for determining the dependence of the average velocity on the flow rate, plate’s area, and diameter of holes. This model was significantly improved using the multiparameter quasi-linear regression analysis. As a result, the nonlinear mathematical models were obtained, allowing the analytical determination of the hydraulic losses and average velocity of the air flow. Additionally, the dependencies for determining the relative error of measuring the average velocity were obtained.

Suggested Citation

  • Serhii Khovanskyi & Ivan Pavlenko & Jan Pitel & Jana Mizakova & Marek Ochowiak & Irina Grechka, 2019. "Solving the Coupled Aerodynamic and Thermal Problem for Modeling the Air Distribution Devices with Perforated Plates," Energies, MDPI, vol. 12(18), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3488-:d:265813
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3488/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3488/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyung Ju Lee & Jaiyoung Ryu & Seong Hyuk Lee, 2019. "Influence of Perforated Fin on Flow Characteristics and Thermal Performance in Spiral Finned-Tube Heat Exchanger," Energies, MDPI, vol. 12(3), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hana Charvátová & Aleš Procházka & Martin Zálešák, 2020. "Computer Simulation of Passive Cooling of Wooden House Covered by Phase Change Material," Energies, MDPI, vol. 13(22), pages 1-15, November.
    2. Myung-Ho Kim & Van Toan Nguyen & Sunghyuk Im & Yohan Jung & Sun-Rock Choi & Byoung-Jae Kim, 2021. "Experimental Validation of Flow Uniformity Improvement by a Perforated Plate in the Heat Exchanger of SFR Steam Generator," Energies, MDPI, vol. 14(18), pages 1-17, September.
    3. Vadym Baha & Natalia Lishchenko & Serhiy Vanyeyev & Jana Mižáková & Tetiana Rodymchenko & Ján Piteľ, 2022. "Numerical Simulation of Gas Flow Passing through Slots of Various Shapes in Labyrinth Seals," Energies, MDPI, vol. 15(9), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyung Ju Lee & Seong Hyuk Lee, 2020. "Effect of Secondary Vortex Flow Near Contact Point on Thermal Performance in the Plate Heat Exchanger with Different Corrugation Profiles," Energies, MDPI, vol. 13(6), pages 1-13, March.
    2. Natalia Rydalina & Elena Antonova & Irina Akhmetova & Svetlana Ilyashenko & Olga Afanaseva & Vincenzo Bianco & Alexander Fedyukhin, 2020. "Analysis of the Efficiency of Using Heat Exchangers with Porous Inserts in Heat and Gas Supply Systems," Energies, MDPI, vol. 13(22), pages 1-13, November.
    3. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    4. Miyer Valdes & Juan G. Ardila & Dario Colorado & Beatris A. Escobedo-Trujillo, 2019. "Computational Model to Evaluate the Effect of Passive Techniques in Tube-In-Tube Helical Heat Exchanger," Energies, MDPI, vol. 12(10), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3488-:d:265813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.