IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1912-d232452.html
   My bibliography  Save this article

Computational Model to Evaluate the Effect of Passive Techniques in Tube-In-Tube Helical Heat Exchanger

Author

Listed:
  • Miyer Valdes

    (Instituto Tecnológico Metropolitano, Departamento de Electrómecanica, Calle 54 a No. 30-01, Medellin P.A. 050013, Colombia)

  • Juan G. Ardila

    (Instituto Tecnológico Metropolitano, Departamento de Electrómecanica, Calle 54 a No. 30-01, Medellin P.A. 050013, Colombia)

  • Dario Colorado

    (Centro de Investigación en Recursos Energéticos y Sustentables, Universidad Veracruzana, Av. Universidad km 7.5, Col. Santa Isabel, Coatzacoalcos C.P. 96535, Mexico)

  • Beatris A. Escobedo-Trujillo

    (Facultad de Ingeniería, Universidad Veracruzana, Av. Universidad km 7.5, Col. Santa Isabel, Coatzacoalcos C.P. 96535, Mexico)

Abstract

The purpose of this research is to evaluate the effect of twist in the internal tube in a tube-in-tube helical heat exchanger keeping constant one type of ridges. To meet this goal, a Computational Fluid Dynamic (CFD) model was carried out. The effects of the fluid flow rate on the heat transfer were studied in the internal and annular flow. A commercial CFD package was used to predict the flow and thermal development in a tube-in-tube helical heat exchanger. The simulations were carried out in counter-flow mode operation with hot fluid in the internal tube side and cold fluids in the annular flow. The internal tube was modified with a double passive technique to provide high turbulence in the outer region. The numerical results agree with the reported data, the use of only one passive technique in the internal tube increases the heat transfer up to 28.8% compared to smooth tube.

Suggested Citation

  • Miyer Valdes & Juan G. Ardila & Dario Colorado & Beatris A. Escobedo-Trujillo, 2019. "Computational Model to Evaluate the Effect of Passive Techniques in Tube-In-Tube Helical Heat Exchanger," Energies, MDPI, vol. 12(10), pages 1-12, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1912-:d:232452
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1912/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1912/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyung Ju Lee & Jaiyoung Ryu & Seong Hyuk Lee, 2019. "Influence of Perforated Fin on Flow Characteristics and Thermal Performance in Spiral Finned-Tube Heat Exchanger," Energies, MDPI, vol. 12(3), pages 1-13, February.
    2. Xun Yang & Teng Xiong & Jing Liang Dong & Wen Xin Li & Yong Wang, 2017. "Investigation of the Dynamic Melting Process in a Thermal Energy Storage Unit Using a Helical Coil Heat Exchanger," Energies, MDPI, vol. 10(8), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiří Jaromír Klemeš & Petar Sabev Varbanov & Paweł Ocłoń & Hon Huin Chin, 2019. "Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies," Energies, MDPI, vol. 12(21), pages 1-32, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyung Ju Lee & Seong Hyuk Lee, 2020. "Effect of Secondary Vortex Flow Near Contact Point on Thermal Performance in the Plate Heat Exchanger with Different Corrugation Profiles," Energies, MDPI, vol. 13(6), pages 1-13, March.
    2. Natalia Rydalina & Elena Antonova & Irina Akhmetova & Svetlana Ilyashenko & Olga Afanaseva & Vincenzo Bianco & Alexander Fedyukhin, 2020. "Analysis of the Efficiency of Using Heat Exchangers with Porous Inserts in Heat and Gas Supply Systems," Energies, MDPI, vol. 13(22), pages 1-13, November.
    3. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    4. Anh Tuan Le & Liang Wang & Yang Wang & Ngoc Tuan Vu & Daoliang Li, 2020. "Experimental Validation of a Low-Energy-Consumption Heating Model for Recirculating Aquaponic Systems," Energies, MDPI, vol. 13(8), pages 1-20, April.
    5. Serhii Khovanskyi & Ivan Pavlenko & Jan Pitel & Jana Mizakova & Marek Ochowiak & Irina Grechka, 2019. "Solving the Coupled Aerodynamic and Thermal Problem for Modeling the Air Distribution Devices with Perforated Plates," Energies, MDPI, vol. 12(18), pages 1-16, September.
    6. Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.
    7. Ma, Y. & Tao, Y. & Shi, L. & Liu, Q.G. & Wang, Y. & Tu, J.Y., 2021. "Investigations on the thermal performance of a novel thermal energy storage unit for poor solar conditions," Renewable Energy, Elsevier, vol. 180(C), pages 166-177.
    8. Yan Li & Zhe Yan & Chao Yang & Bin Guo & Han Yuan & Jian Zhao & Ning Mei, 2017. "Study of a Coil Heat Exchanger with an Ice Storage System," Energies, MDPI, vol. 10(12), pages 1-13, December.
    9. Peter Sivák & Peter Tauš & Radim Rybár & Martin Beer & Zuzana Šimková & František Baník & Sergey Zhironkin & Jana Čitbajová, 2020. "Analysis of the Combined Ice Storage (PCM) Heating System Installation with Special Kind of Solar Absorber in an Older House," Energies, MDPI, vol. 13(15), pages 1-20, July.
    10. Yingjie Zhou & Qibin Li & Qiang Wang, 2019. "Energy Storage Analysis of UIO-66 and Water Mixed Nanofluids: An Experimental and Theoretical Study," Energies, MDPI, vol. 12(13), pages 1-9, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1912-:d:232452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.