IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3437-d264779.html
   My bibliography  Save this article

Evaluation of Radiant Heating Ceiling Based on Energy and Thermal Comfort Criteria, Part II: A Numerical Study

Author

Listed:
  • M. Reza Safizadeh

    (Building Science Group (fbta), Institute for Building Design and Technology, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany)

  • Lukasz Watly

    (Building Science Group (fbta), Institute for Building Design and Technology, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany)

  • Andreas Wagner

    (Building Science Group (fbta), Institute for Building Design and Technology, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany)

Abstract

Large-surface radiant heating ceiling systems favor energy-efficient solutions on the heat generation side because of the relatively low temperature of the heat transfer medium. Additionally, their application in the renovation of existing buildings is relatively uncomplicated and requires minimal changes to the building’s construction. However, ASHRAE Standard-55 and former studies by Fanger indicated that among large-surface radiant systems, the highest percentage of dissatisfaction for an equal radiant temperature asymmetry (RTA) was reported for a warm ceiling. The maximum RTA of 4 K corresponding to 5% of dissatisfaction was suggested. In the first part of our study (subjective experiments), we have suggested the RTA of about 7.4 K if occupants have winter clothing (Safizadeh et al., 2018). However, former studies tested radiant ceiling systems at different temperatures in “neutral conditions” with a constant operative temperature, which rarely occurs in reality. Accordingly, the goal of this study is to evaluate the potential application of low-temperature radiant heating ceilings in a building with low- and high-performance facades using steady-state simulations with a coupled CFD–thermal comfort model and transient simulations using TRNSYS. Forty combinations of simulation scenarios including six ceiling surface temperatures (20 °C, 25 °C, 28 °C, 33 °C, 38 °C, and 45 °C), two low- and high-performance facades, two rooms with one and two facades, and distances of 1 m and 3 m to the window were examined. The findings of this research show that the supply water temperatures between 28–45 °C from a heat pump are ideal for a building with a high-performance façade. Additionally, the results suggest that ceiling temperatures as low as 20–25 °C in renovated buildings and 25–28 °C in a building with low-performance facades can provide optimal thermal sensations at most body parts. This study also proves that the PMV comfort model (Predicted Mean Vote index) is not at all a suitable model for the evaluation of radiant heating systems (especially if occupants have winter clothes), even if the air/operative temperature distribution near an occupant is uniform.

Suggested Citation

  • M. Reza Safizadeh & Lukasz Watly & Andreas Wagner, 2019. "Evaluation of Radiant Heating Ceiling Based on Energy and Thermal Comfort Criteria, Part II: A Numerical Study," Energies, MDPI, vol. 12(18), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3437-:d:264779
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Reza Safizadeh & Marcel Schweiker & Andreas Wagner, 2018. "Experimental Evaluation of Radiant Heating Ceiling Systems Based on Thermal Comfort Criteria," Energies, MDPI, vol. 11(11), pages 1-21, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balázs Cakó & Erzsébet Szeréna Zoltán & János Girán & Gabriella Medvegy & Mária Eördöghné Miklós & Árpád Nyers & Anett Tímea Grozdics & Zsolt Kisander & Viktor Bagdán & Ágnes Borsos, 2021. "An Efficient Method to Compute Thermal Parameters of the Comfort Map Using a Decreased Number of Measurements," Energies, MDPI, vol. 14(18), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmet Bircan Atmaca & Gülay Zorer Gedik & Andreas Wagner, 2021. "Determination of Optimum Envelope of Religious Buildings in Terms of Thermal Comfort and Energy Consumption: Mosque Cases," Energies, MDPI, vol. 14(20), pages 1-17, October.
    2. David Sauerwein & Niall Fitzgerald & Christoph Kuhn, 2023. "Experimental and Numerical Analysis of Temperature Reduction Potentials in the Heating Supply of an Unrenovated University Building," Energies, MDPI, vol. 16(3), pages 1-25, January.
    3. Beungyong Park & Seong Ryong Ryu & Chang Heon Cheong, 2020. "Thermal Comfort Analysis of Combined Radiation-Convection Floor Heating System," Energies, MDPI, vol. 13(6), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3437-:d:264779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.