IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3121-d257508.html
   My bibliography  Save this article

An Improved Statistical Method for Calculating Lightning Overvoltages in HVDC Overhead Line/Cable Systems

Author

Listed:
  • Oscar Lennerhag

    (Independent Insulation Group Sweden AB, 771 30 Ludvika, Sweden)

  • Jan Lundquist

    (Independent Insulation Group Sweden AB, 771 30 Ludvika, Sweden)

  • Christiaan Engelbrecht

    (Engelbrecht Consulting B.V., 6715 KD Ede, The Netherlands)

  • Tanumay Karmokar

    (NKT HV Cables AB, 371 60 Lyckeby, Sweden)

  • Math H. J. Bollen

    (Engineering Sciences and Mathematics, Luleå University of Technology, 931 87 Skellefteå, Sweden)

Abstract

HVDC cable systems connected to HVDC overhead lines are subject to fast front overvoltages emanating from the line when lightning strikes a shield wire (backflashover) or a pole conductor (shielding failure). Representative fast front overvoltage levels for HVDC cable systems are usually established without considering their statistical characteristics. A statistical method to determine overvoltages related to the acceptable mean time between failure (MTBF) for the cable system was developed previously. The method accounts for the statistical distribution of lightning current magnitudes as well as the attenuation of the overvoltage wave due to corona discharges on the line, since this effect dominates for system voltages up to about ±320 kV. To make the method suitable for higher system voltages as well, this article introduces an improved statistical method which also accounts for surge attenuation through resistive effects, soil ionization, and statistical treatment of overvoltages due to shielding failures. To illustrate the improved method, it is applied to a case study for a ±525 kV DC line.

Suggested Citation

  • Oscar Lennerhag & Jan Lundquist & Christiaan Engelbrecht & Tanumay Karmokar & Math H. J. Bollen, 2019. "An Improved Statistical Method for Calculating Lightning Overvoltages in HVDC Overhead Line/Cable Systems," Energies, MDPI, vol. 12(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3121-:d:257508
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3121/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3121/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amr S. Zalhaf & Ensheng Zhao & Yang Han & Ping Yang & Abdulrazak H. Almaliki & Reda M. H. Aly, 2022. "Evaluation of the Transient Overvoltages of HVDC Transmission Lines Caused by Lightning Strikes," Energies, MDPI, vol. 15(4), pages 1-20, February.
    2. Mansoor Asif & Ho-Yun Lee & Kyu-Hoon Park & Ayesha Shakeel & Bang-Wook Lee, 2019. "Assessment of Overvoltage and Insulation Coordination in Mixed HVDC Transmission Lines Exposed to Lightning Strikes," Energies, MDPI, vol. 12(21), pages 1-24, November.
    3. Marek Florkowski & Jakub Furgał & Maciej Kuniewski, 2021. "Lightning Impulse Overvoltage Propagation in HVDC Meshed Grid," Energies, MDPI, vol. 14(11), pages 1-21, May.
    4. Rafał Tarko & Jakub Gajdzica & Wiesław Nowak & Waldemar Szpyra, 2021. "Study of the Lightning Overvoltage Protection Effectiveness of High Voltage Mixed Overhead Cable Power Lines," Energies, MDPI, vol. 14(8), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3121-:d:257508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.