IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3077-d256380.html
   My bibliography  Save this article

An Improved Signal Processing Approach Based on Analysis Mode Decomposition and Empirical Mode Decomposition

Author

Listed:
  • Zhongzhe Chen

    (The School of Mechanical and Electrical Engineering, University of Electronic and Science Technology of China, Chengdu 611731, China)

  • Baqiao Liu

    (Department of Computer Science, University of North Carolina, Chapel Hill, NC 27516, USA)

  • Xiaogang Yan

    (The School of Mechanical and Electrical Engineering, University of Electronic and Science Technology of China, Chengdu 611731, China)

  • Hongquan Yang

    (The School of Mechanical and Electrical Engineering, University of Electronic and Science Technology of China, Chengdu 611731, China)

Abstract

Empirical mode decomposition (EMD) is a widely used adaptive signal processing method, which has shown some shortcomings in engineering practice, such as sifting stop criteria of intrinsic mode function (IMF), mode mixing and end effect. In this paper, an improved sifting stop criterion based on the valid data segment is proposed, and is compared with the traditional one. Results show that the new sifting stop criterion avoids the influence of end effects and improves the correctness of the EMD. In addition, a novel AEMD method combining the analysis mode decomposition (AMD) and EMD is developed to solve the mode-mixing problem, in which EMD is firstly applied to dispose the original signal, and then AMD is used to decompose these mixed modes. Then, these decomposed modes are reconstituted according to a certain principle. These reconstituted components showed mode mixing phenomena alleviated. Model comparison was conducted between the proposed method with the ensemble empirical mode decomposition (EEMD), which is the mainstream method improved based on EMD. Results indicated that the AEMD and EEMD can effectively restrain the mode mixing, but the AEMD has a shorter execution time than that of EEMD.

Suggested Citation

  • Zhongzhe Chen & Baqiao Liu & Xiaogang Yan & Hongquan Yang, 2019. "An Improved Signal Processing Approach Based on Analysis Mode Decomposition and Empirical Mode Decomposition," Energies, MDPI, vol. 12(16), pages 1-12, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3077-:d:256380
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3077/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3077/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhongzhe Chen & Shuchen Cao & Zijian Mao, 2017. "Remaining Useful Life Estimation of Aircraft Engines Using a Modified Similarity and Supporting Vector Machine (SVM) Approach," Energies, MDPI, vol. 11(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nam, KiJeon & Heo, SungKu & Li, Qian & Loy-Benitez, Jorge & Kim, MinJeong & Park, DuckShin & Yoo, ChangKyoo, 2020. "A proactive energy-efficient optimal ventilation system using artificial intelligent techniques under outdoor air quality conditions," Applied Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jiaxian & Li, Dongpeng & Huang, Ruyi & Chen, Zhuyun & Li, Weihua, 2023. "Aero-engine remaining useful life prediction method with self-adaptive multimodal data fusion and cluster-ensemble transfer regression," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Liu, Yingchao & Hu, Xiaofeng & Zhang, Wenjuan, 2019. "Remaining useful life prediction based on health index similarity," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 502-510.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3077-:d:256380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.