IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2720-d248788.html
   My bibliography  Save this article

Near Field Wireless Powering of Deep Medical Implants

Author

Listed:
  • Tommaso Campi

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, 67100 L’Aquila, Italy)

  • Silvano Cruciani

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, 67100 L’Aquila, Italy)

  • Valerio De Santis

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, 67100 L’Aquila, Italy)

  • Francesca Maradei

    (Department of Astronautics, Electrical and Energetics Engineering, Sapienza University of Rome, 00184 Rome, Italy)

  • Mauro Feliziani

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, 67100 L’Aquila, Italy)

Abstract

This study deals with the inductive-based wireless power transfer (WPT) technology applied to power a deep implant with no fixed position. The usage of a large primary coil is here proposed in order to obtain a nearly uniform magnetic field inside the human body at intermediate frequencies (IFs). A simple configuration of the primary coil, derived by the Helmholtz theory, is proposed. Then, a detailed analysis is carried out to assess the compliance with electromagnetic field (EMF) safety standards. General guidelines on the design of primary and secondary coils are provided for powering or charging a deep implant of cylindrical shape with or without metal housing. Finally, three different WPT coil demonstrators have been fabricated and tested. The obtained results have demonstrated the validity of the proposed technology.

Suggested Citation

  • Tommaso Campi & Silvano Cruciani & Valerio De Santis & Francesca Maradei & Mauro Feliziani, 2019. "Near Field Wireless Powering of Deep Medical Implants," Energies, MDPI, vol. 12(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2720-:d:248788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2720/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2720/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongwook Kim & Dawon Jeong & Jongwook Kim & Haerim Kim & Junho Kim & Sung-Min Park & Seungyoung Ahn, 2020. "Design and Implementation of a Wireless Charging-Based Cardiac Monitoring System Focused on Temperature Reduction and Robust Power Transfer Efficiency," Energies, MDPI, vol. 13(4), pages 1-17, February.
    2. Eunjung Kang & Jun Hur & Chulhun Seo & Hojin Lee & Hosung Choo, 2020. "High Aperture Efficiency Array Antenna for Wireless Power Transfer Applications," Energies, MDPI, vol. 13(9), pages 1-15, May.
    3. Yujun Shin & Jaehyoung Park & Haerim Kim & Seongho Woo & Bumjin Park & Sungryul Huh & Changmin Lee & Seungyoung Ahn, 2021. "Design Considerations for Adding Series Inductors to Reduce Electromagnetic Field Interference in an Over-Coupled WPT System," Energies, MDPI, vol. 14(10), pages 1-28, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2720-:d:248788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.