IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2359-d241303.html
   My bibliography  Save this article

A Short-Term Data Based Water Consumption Prediction Approach

Author

Listed:
  • Rafael Benítez

    (Departamento Matemáticas para la economía y la empresa, Universidad de Valencia, 46022 Valencia, Spain)

  • Carmen Ortiz-Caraballo

    (Departamento de Matemáticas, Universidad de Extremadura, 10071 Cáceres, Spain)

  • Juan Carlos Preciado

    (Departamento Ingeniería Sistemas Informáticos y Telemáticos, Universidad de Extremadura, 10071 Cáceres, Spain)

  • José M. Conejero

    (Departamento Ingeniería Sistemas Informáticos y Telemáticos, Universidad de Extremadura, 10071 Cáceres, Spain)

  • Fernando Sánchez Figueroa

    (Homeria Open Solutions, Cáceres, 10071 Cáceres, Spain)

  • Alvaro Rubio-Largo

    (NOVA Information Management School, Universidade Nova de Lisboa, 1070-312 Lisbon, Portugal)

Abstract

A smart water network consists of a large number of devices that measure a wide range of parameters present in distribution networks in an automatic and continuous way. Among these data, you can find the flow, pressure, or totalizer measurements that, when processed with appropriate algorithms, allow for leakage detection at an early stage. These algorithms are mainly based on water demand forecasting. Different approaches for the prediction of water demand are available in the literature. Although they present successful results at different levels, they have two main drawbacks: the inclusion of several seasonalities is quite cumbersome, and the fitting horizons are not very large. With the aim of solving these problems, we present the application of pattern similarity-based techniques to the water demand forecasting problem. The use of these techniques removes the need to determine the annual seasonality and, at the same time, extends the horizon of prediction to 24 h. The algorithm has been tested in the context of a real project for the detection and location of leaks at an early stage by means of demand forecasting, and good results were obtained, which are also presented in this paper.

Suggested Citation

  • Rafael Benítez & Carmen Ortiz-Caraballo & Juan Carlos Preciado & José M. Conejero & Fernando Sánchez Figueroa & Alvaro Rubio-Largo, 2019. "A Short-Term Data Based Water Consumption Prediction Approach," Energies, MDPI, vol. 12(12), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2359-:d:241303
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2359/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2359/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jorge Caiado, 2009. "Performance of combined double seasonal univariate time series models for forecasting water demand," CEMAPRE Working Papers 0903, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-jun Wang & Jian-yun Zhang & Shahid Shamsuddin & Ru-lin Oyang & Tie-sheng Guan & Jian-guo Xue & Xu Zhang, 2017. "Impacts of climate variability and changes on domestic water use in the Yellow River Basin of China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(4), pages 595-608, April.
    2. Xiao-Jun Wang & Jian-Yun Zhang & Shamsuddin Shahid & Wei Xie & Chao-Yang Du & Xiao-Chuan Shang & Xu Zhang, 2018. "Modeling domestic water demand in Huaihe River Basin of China under climate change and population dynamics," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(2), pages 911-924, April.
    3. E. Pacchin & F. Gagliardi & S. Alvisi & M. Franchini, 2019. "A Comparison of Short-Term Water Demand Forecasting Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1481-1497, March.
    4. Xiao-jun Wang & Jian-yun Zhang & Shamsuddin Shahid & En-hong Guan & Yong-xiang Wu & Juan Gao & Rui-min He, 2016. "Adaptation to climate change impacts on water demand," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 81-99, January.
    5. Jens Kley-Holsteg & Florian Ziel, 2020. "Probabilistic Multi-Step-Ahead Short-Term Water Demand Forecasting with Lasso," Papers 2005.04522, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2359-:d:241303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.