IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2141-d237156.html
   My bibliography  Save this article

Deep Borehole Disposal Safety Case

Author

Listed:
  • Geoff A. Freeze

    (Sandia National Laboratories, Albuquerque, NM 87185, USA)

  • Emily Stein

    (Sandia National Laboratories, Albuquerque, NM 87185, USA)

  • Patrick V. Brady

    (Sandia National Laboratories, Albuquerque, NM 87185, USA)

  • Carlos Lopez

    (Sandia National Laboratories, Albuquerque, NM 87185, USA)

  • David Sassani

    (Sandia National Laboratories, Albuquerque, NM 87185, USA)

  • Karl Travis

    (Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK)

  • Fergus Gibb

    (Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK)

  • John Beswick

    (Marriott Drilling Group, Chesterfield S45 9BQ, UK)

Abstract

The safety case for deep borehole disposal of nuclear wastes contains a safety strategy, an assessment basis, and a safety assessment. The safety strategy includes strategies for management, siting and design, and assessment. The assessment basis considers site selection, pre-closure, and post-closure, which includes waste and engineered barriers, the geosphere/natural barriers, and the biosphere and surface environment. The safety assessment entails a pre-closure safety analysis, a post-closure performance assessment, and confidence enhancement analyses. This paper outlines the assessment basis and safety assessment aspects of a deep borehole disposal safety case. The safety case presented here is specific to deep borehole disposal of Cs and Sr capsules, but is generally applicable to other waste forms, such as spent nuclear fuel. The safety assessments for pre-closure and post-closure are briefly summarized from other sources; key issues for confidence enhancement are described in greater detail. These confidence enhancement analyses require building the technical basis for geologically old, reducing, highly saline brines at the depth of waste emplacement, and using reactive-transport codes to predict their movement in post-closure. The development and emplacement of borehole seals above the waste emplacement zone is also important to confidence enhancement.

Suggested Citation

  • Geoff A. Freeze & Emily Stein & Patrick V. Brady & Carlos Lopez & David Sassani & Karl Travis & Fergus Gibb & John Beswick, 2019. "Deep Borehole Disposal Safety Case," Energies, MDPI, vol. 12(11), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2141-:d:237156
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2141/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2141/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geoff A. Freeze & Emily Stein & Patrick V. Brady, 2019. "Post-Closure Performance Assessment for Deep Borehole Disposal of Cs/Sr Capsules," Energies, MDPI, vol. 12(10), pages 1-15, May.
    2. Neil A. Chapman, 2019. "Who Might Be Interested in a Deep Borehole Disposal Facility for Their Radioactive Waste?," Energies, MDPI, vol. 12(8), pages 1-13, April.
    3. G. Holland & B. Sherwood Lollar & L. Li & G. Lacrampe-Couloume & G. F. Slater & C. J. Ballentine, 2013. "Deep fracture fluids isolated in the crust since the Precambrian era," Nature, Nature, vol. 497(7449), pages 357-360, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Finsterle & Richard A. Muller & John Grimsich & Ethan A. Bates & John Midgley, 2021. "Post-Closure Safety Analysis of Nuclear Waste Disposal in Deep Vertical Boreholes," Energies, MDPI, vol. 14(19), pages 1-24, October.
    2. Dirk Mallants & Karl Travis & Neil Chapman & Patrick V. Brady & Hefin Griffiths, 2020. "The State of the Science and Technology in Deep Borehole Disposal of Nuclear Waste," Energies, MDPI, vol. 13(4), pages 1-7, February.
    3. Jingyu Shi & Baotang Shen & Manoj Khanal & Dirk Mallants, 2022. "Analytical and Numerical Estimation of Fracture Initiation and Propagation Regions around Large-Diameter, Deep Boreholes for Disposal of Long-Lived Intermediate-Level Waste," Energies, MDPI, vol. 15(7), pages 1-24, March.
    4. Michael I. Ojovan & Hans J. Steinmetz, 2022. "Approaches to Disposal of Nuclear Waste," Energies, MDPI, vol. 15(20), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geoff A. Freeze & Emily Stein & Patrick V. Brady, 2019. "Post-Closure Performance Assessment for Deep Borehole Disposal of Cs/Sr Capsules," Energies, MDPI, vol. 12(10), pages 1-15, May.
    2. Dirk Mallants & Karl Travis & Neil Chapman & Patrick V. Brady & Hefin Griffiths, 2020. "The State of the Science and Technology in Deep Borehole Disposal of Nuclear Waste," Energies, MDPI, vol. 13(4), pages 1-7, February.
    3. Jingyu Shi & Baotang Shen & Manoj Khanal & Dirk Mallants, 2022. "Analytical and Numerical Estimation of Fracture Initiation and Propagation Regions around Large-Diameter, Deep Boreholes for Disposal of Long-Lived Intermediate-Level Waste," Energies, MDPI, vol. 15(7), pages 1-24, March.
    4. Guido Bracke & Wolfram Kudla & Tino Rosenzweig, 2019. "Status of Deep Borehole Disposal of High-Level Radioactive Waste in Germany," Energies, MDPI, vol. 12(13), pages 1-15, July.
    5. Stefan Finsterle & Richard A. Muller & John Grimsich & Ethan A. Bates & John Midgley, 2021. "Post-Closure Safety Analysis of Nuclear Waste Disposal in Deep Vertical Boreholes," Energies, MDPI, vol. 14(19), pages 1-24, October.
    6. Devan M. Nisson & Clifford C. Walters & Martha L. Chacón-Patiño & Chad R. Weisbrod & Thomas L. Kieft & Barbara Sherwood Lollar & Oliver Warr & Julio Castillo & Scott M. Perl & Errol D. Cason & Barry M, 2023. "Radiolytically reworked Archean organic matter in a habitable deep ancient high-temperature brine," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Koudai Taguchi & Alexis Gilbert & Barbara Sherwood Lollar & Thomas Giunta & Christopher J. Boreham & Qi Liu & Juske Horita & Yuichiro Ueno, 2022. "Low 13C-13C abundances in abiotic ethane," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Bader Alshuraiaan & Sergey Pushkin & Anastasia Kurilova & Magdalena Mazur, 2021. "Management of the Energy and Economic Potential of Nuclear Waste Use," Energies, MDPI, vol. 14(12), pages 1-14, June.
    9. Victor Malkovsky & Sergey Yudintsev & Michael Ojovan, 2023. "Forecast of 241 Am Migration from a System of Deep Horizontal Boreholes," Sustainability, MDPI, vol. 15(20), pages 1-15, October.
    10. Michael I. Ojovan & Hans J. Steinmetz, 2022. "Approaches to Disposal of Nuclear Waste," Energies, MDPI, vol. 15(20), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2141-:d:237156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.