IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p87-d193706.html
   My bibliography  Save this article

Reducing High Energy Demand Associated with Air-Conditioning Needs in Saudi Arabia

Author

Listed:
  • Jubran Alshahrani

    (School of Engineering and Sustainable Development, De Montfort University, Leicester LE1 9BH, UK)

  • Peter Boait

    (School of Engineering and Sustainable Development, De Montfort University, Leicester LE1 9BH, UK)

Abstract

Electricity consumption in the Kingdom of Saudi Arabia (KSA) has grown at an annual rate of about 7% as a result of population and economic growth. The consumption of the residential sector accounts for over 50% of the total energy generation. Moreover, the energy consumption of air-conditioning (AC) systems has become 70% of residential buildings’ total electricity consumption in the summer months, leading to a high peak electricity demand. This study investigates solutions that will tackle the problem of high energy demand associated with KSA’s air-conditioning needs in residential buildings. To reduce the AC energy consumption in the residential sector, we propose the use of smart control in the thermostat settings. Smart control can be utilized by (i) scheduling and advance control of the operation of AC systems and (ii) remotely setting the thermostats appropriately by the utilities. In this study, we model typical residential buildings and, crucially, occupancy behavior based on behavioral data obtained through a survey. The potential impacts in terms of achievable electricity savings of different AC operation modes for residential houses of Riyadh city are presented. The results from our computer simulations show that the solutions intended to reduce energy consumption effectively, particularly in the advance mode of operation, resulted in a 30% to 40% increase in total annual energy savings.

Suggested Citation

  • Jubran Alshahrani & Peter Boait, 2018. "Reducing High Energy Demand Associated with Air-Conditioning Needs in Saudi Arabia," Energies, MDPI, vol. 12(1), pages 1-29, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:87-:d:193706
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/87/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/87/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    2. Vine, Edward L., 1986. "Saving energy the easy way: An analysis of thermostat management," Energy, Elsevier, vol. 11(8), pages 811-820.
    3. Omer, Abdeen Mustafa, 2008. "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2265-2300, December.
    4. Oldewurtel, Frauke & Sturzenegger, David & Morari, Manfred, 2013. "Importance of occupancy information for building climate control," Applied Energy, Elsevier, vol. 101(C), pages 521-532.
    5. Hasnain, Syed Mahmood & Alabbadi, Naif Mohammed, 2000. "Need for thermal-storage air-conditioning in Saudi Arabia," Applied Energy, Elsevier, vol. 65(1-4), pages 153-164, April.
    6. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    7. Taleb, H.M. & Pitts, A.C., 2009. "The potential to exploit use of building-integrated photovoltaics in countries of the Gulf Cooperation Council," Renewable Energy, Elsevier, vol. 34(4), pages 1092-1099.
    8. Al-Sanea, Sami A. & Zedan, M.F., 2008. "Optimized monthly-fixed thermostat-setting scheme for maximum energy-savings and thermal comfort in air-conditioned spaces," Applied Energy, Elsevier, vol. 85(5), pages 326-346, May.
    9. Gyamfi, Samuel & Krumdieck, Susan & Urmee, Tania, 2013. "Residential peak electricity demand response—Highlights of some behavioural issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 71-77.
    10. Al-Ajlan, S.A. & Al-Ibrahim, A.M. & Abdulkhaleq, M. & Alghamdi, F., 2006. "Developing sustainable energy policies for electrical energy conservation in Saudi Arabia," Energy Policy, Elsevier, vol. 34(13), pages 1556-1565, September.
    11. Darby, Sarah J. & McKenna, Eoghan, 2012. "Social implications of residential demand response in cool temperate climates," Energy Policy, Elsevier, vol. 49(C), pages 759-769.
    12. Taleb, Hanan M. & Sharples, Steve, 2011. "Developing sustainable residential buildings in Saudi Arabia: A case study," Applied Energy, Elsevier, vol. 88(1), pages 383-391, January.
    13. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tayeb Brahimi, 2019. "Using Artificial Intelligence to Predict Wind Speed for Energy Application in Saudi Arabia," Energies, MDPI, vol. 12(24), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    2. Good, Nicholas & Ellis, Keith A. & Mancarella, Pierluigi, 2017. "Review and classification of barriers and enablers of demand response in the smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 57-72.
    3. Yan, Xing & Ozturk, Yusuf & Hu, Zechun & Song, Yonghua, 2018. "A review on price-driven residential demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 411-419.
    4. Xu, Xiaojing & Chen, Chien-fei, 2019. "Energy efficiency and energy justice for U.S. low-income households: An analysis of multifaceted challenges and potential," Energy Policy, Elsevier, vol. 128(C), pages 763-774.
    5. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    6. Srivastava, Aman & Van Passel, Steven & Kessels, Roselinde & Valkering, Pieter & Laes, Erik, 2020. "Reducing winter peaks in electricity consumption: A choice experiment to structure demand response programs," Energy Policy, Elsevier, vol. 137(C).
    7. Hu, Zheng & Kim, Jin-ho & Wang, Jianhui & Byrne, John, 2015. "Review of dynamic pricing programs in the U.S. and Europe: Status quo and policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 743-751.
    8. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    9. Madia Safdar & Ghulam Amjad Hussain & Matti Lehtonen, 2019. "Costs of Demand Response from Residential Customers’ Perspective," Energies, MDPI, vol. 12(9), pages 1-16, April.
    10. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "Residential demand response scheme based on adaptive consumption level pricing," Energy, Elsevier, vol. 113(C), pages 301-308.
    11. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    12. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    13. Srivastava, A. & Van Passel, S. & Valkering, P. & Laes, E.J.W., 2021. "Power outages and bill savings: A choice experiment on residential demand response acceptability in Delhi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Yang, Changhui & Meng, Chen & Zhou, Kaile, 2018. "Residential electricity pricing in China: The context of price-based demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2870-2878.
    15. Kowalska-Pyzalska, Anna, 2018. "What makes consumers adopt to innovative energy services in the energy market? A review of incentives and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3570-3581.
    16. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    17. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    18. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    19. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    20. Shakeri, Mohammad & Shayestegan, Mohsen & Reza, S.M. Salim & Yahya, Iskandar & Bais, Badariah & Akhtaruzzaman, Md & Sopian, Kamaruzzaman & Amin, Nowshad, 2018. "Implementation of a novel home energy management system (HEMS) architecture with solar photovoltaic system as supplementary source," Renewable Energy, Elsevier, vol. 125(C), pages 108-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:87-:d:193706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.