IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2423-d169520.html
   My bibliography  Save this article

Full-Speed Range Encoderless Control for Salient-Pole PMSM with a Novel Full-Order SMO

Author

Listed:
  • Yuanlin Wang

    (The School of Automation, Northwestern Polytechnical University, Xi’an 710072, China)

  • Xiaocan Wang

    (The School of Automation, Northwestern Polytechnical University, Xi’an 710072, China)

  • Wei Xie

    (Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Jinjiang 362200, China)

  • Manfeng Dou

    (The School of Automation, Northwestern Polytechnical University, Xi’an 710072, China)

Abstract

For salient-pole permanent magnet synchronous motor (PMSM), the amplitude of extended back electromotive force (EEMF) is determined by rotor speed, stator current and its derivative value. Theoretically, even at extremely low speed, the back EEMF can be detected if the current in q -axis is changing. However, it is difficult to detect the EEMF precisely due to the current at low speed. In this paper, novel full-order multi-input and multi-output discrete-time sliding mode observer (SMO) is built to detect the rotor position. With the proposed rotor position estimation technique, the motor can start up from standstill and reverse between positive and negative directions without a position sensor. The proposed method was evaluated by experiment.

Suggested Citation

  • Yuanlin Wang & Xiaocan Wang & Wei Xie & Manfeng Dou, 2018. "Full-Speed Range Encoderless Control for Salient-Pole PMSM with a Novel Full-Order SMO," Energies, MDPI, vol. 11(9), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2423-:d:169520
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2423/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikola Lopac & Neven Bulic & Niksa Vrkic, 2019. "Sliding Mode Observer-Based Load Angle Estimation for Salient-Pole Wound Rotor Synchronous Generators," Energies, MDPI, vol. 12(9), pages 1-22, April.
    2. Jongwon Choi & Kwanghee Nam, 2018. "Wound Synchronous Machine Sensorless Control Based on Signal Injection into the Rotor Winding," Energies, MDPI, vol. 11(12), pages 1-20, November.
    3. Shuo Chen & Xiao Zhang & Xiang Wu & Guojun Tan & Xianchao Chen, 2019. "Sensorless Control for IPMSM Based on Adaptive Super-Twisting Sliding-Mode Observer and Improved Phase-Locked Loop," Energies, MDPI, vol. 12(7), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2423-:d:169520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.