IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2329-d167646.html
   My bibliography  Save this article

Numerical Simulation Study on Seepage Theory of a Multi-Section Fractured Horizontal Well in Shale Gas Reservoirs Based on Multi-Scale Flow Mechanisms

Author

Listed:
  • Chao Tang

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, China)

  • Xiaofan Chen

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, China)

  • Zhimin Du

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, China)

  • Ping Yue

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, China)

  • Jiabao Wei

    (Hekou Production Plant of Shengli Oilfield, Dongying 257000, Shandong, China)

Abstract

Aimed at the multi-scale fractures for stimulated reservoir volume (SRV)-fractured horizontal wells in shale gas reservoirs, a mathematical model of unsteady seepage is established, which considers the characteristics of a dual media of matrix and natural fractures as well as flow in the large-scale hydraulic fractures, based on a discrete-fracture model. Multi-scale flow mechanisms, such as gas desorption, the Klinkenberg effect, and gas diffusion are taken into consideration. A three-dimensional numerical model based on the finite volume method is established, which includes the construction of spatial discretization, calculation of average pressure gradient, and variable at interface, etc. Some related processing techniques, such as boundedness processing upstream and downstream of grid flow, was used to limit non-physical oscillation at large-scale hydraulic fracture interfaces. The sequential solution is performed to solve the pressure equations of matrix, natural, and large-scale hydraulic fractures. The production dynamics and pressure distribution of a multi-section fractured horizontal well in a shale gas reservoir are calculated. Results indicate that, with the increase of the Langmuir volume, the average formation pressure decreases at a slow rate. Simultaneously, the initial gas production and the contribution ratio of the desorbed gas increase. With the decrease of the pore size of the matrix, gas diffusion and the Klinkenberg effect have a greater impact on shale gas production. By changing the fracture half-length and the number of fractured sections, we observe that the production process can not only pursue the long fractures or increase the number of fractured sections, but also should optimize the parameters such as the perforation position, cluster spacing, and fracturing sequence. The stimulated reservoir volume can effectively control the shale reservoir.

Suggested Citation

  • Chao Tang & Xiaofan Chen & Zhimin Du & Ping Yue & Jiabao Wei, 2018. "Numerical Simulation Study on Seepage Theory of a Multi-Section Fractured Horizontal Well in Shale Gas Reservoirs Based on Multi-Scale Flow Mechanisms," Energies, MDPI, vol. 11(9), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2329-:d:167646
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2329/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2329/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Chao & Zhou, Wen & Chen, Zhangxin & Wei, Jiabao, 2023. "Numerical simulation of CO2 sequestration in shale gas reservoirs at reservoir scale coupled with enhanced gas recovery," Energy, Elsevier, vol. 277(C).
    2. Long Ren & Wendong Wang & Yuliang Su & Mingqiang Chen & Cheng Jing & Nan Zhang & Yanlong He & Jian Sun, 2018. "Multiporosity and Multiscale Flow Characteristics of a Stimulated Reservoir Volume (SRV)-Fractured Horizontal Well in a Tight Oil Reservoir," Energies, MDPI, vol. 11(10), pages 1-14, October.
    3. Kyoungsu Kim & Jonggeun Choe, 2019. "Hydraulic Fracture Design with a Proxy Model for Unconventional Shale Gas Reservoir with Considering Feasibility Study," Energies, MDPI, vol. 12(2), pages 1-12, January.
    4. Minxuan Li & Liang Cheng & Dehua Liu & Jiani Hu & Wei Zhang & Kuidong Li & Jialin Xiao & Xiaojun Wang & Feng Zhang, 2021. "Big Data Analysis and Research on Fracturing Construction Parameters of Shale Gas Horizontal Wells—A Case Study of Horizontal Wells in Fuling Demonstration Area, China," Energies, MDPI, vol. 14(24), pages 1-17, December.
    5. Honghua Tao & Liehui Zhang & Qiguo Liu & Qi Deng & Man Luo & Yulong Zhao, 2018. "An Analytical Flow Model for Heterogeneous Multi-Fractured Systems in Shale Gas Reservoirs," Energies, MDPI, vol. 11(12), pages 1-19, December.
    6. Jianchao Cai & Zhien Zhang & Qinjun Kang & Harpreet Singh, 2019. "Recent Advances in Flow and Transport Properties of Unconventional Reservoirs," Energies, MDPI, vol. 12(10), pages 1-5, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2329-:d:167646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.