IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3422-d188551.html
   My bibliography  Save this article

An Analytical Flow Model for Heterogeneous Multi-Fractured Systems in Shale Gas Reservoirs

Author

Listed:
  • Honghua Tao

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
    John and Willie Leone Family Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA 16802, USA
    Key Laboratory of Shale Gas Exploration, Ministry of Land and Resources Engineering, Chongqing 400042, China)

  • Liehui Zhang

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Qiguo Liu

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Qi Deng

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Man Luo

    (Petro China West Pipeline Company, Urumqi 830013, China)

  • Yulong Zhao

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

Abstract

The use of multiple hydraulically fractured horizontal wells has been proven to be an efficient and effective way to enable shale gas production. Meanwhile, analytical models represent a rapid evaluation method that has been developed to investigate the pressure-transient behaviors in shale gas reservoirs. Furthermore, fractal-anomalous diffusion, which describes a sub-diffusion process by a non-linear relationship with time and cannot be represented by Darcy’s law, has been noticed in heterogeneous porous media. In order to describe the pressure-transient behaviors in shale gas reservoirs more accurately, an improved analytical model based on the fractal-anomalous diffusion is established. Various diffusions in the shale matrix, pressure-dependent permeability, fractal geometry features, and anomalous diffusion in the stimulated reservoir volume region are considered. Type curves of pressure and pressure derivatives are plotted, and the effects of anomalous diffusion and mass fractal dimension are investigated in a sensitivity analysis. The impact of anomalous diffusion is recognized as two opposite aspects in the early linear flow regime and after that period, when it changes from 1 to 0.75. The smaller mass fractal dimension, which changes from 2 to 1.8, results in more pressure and a drop in the pressure derivative.

Suggested Citation

  • Honghua Tao & Liehui Zhang & Qiguo Liu & Qi Deng & Man Luo & Yulong Zhao, 2018. "An Analytical Flow Model for Heterogeneous Multi-Fractured Systems in Shale Gas Reservoirs," Energies, MDPI, vol. 11(12), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3422-:d:188551
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3422/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3422/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chao Tang & Xiaofan Chen & Zhimin Du & Ping Yue & Jiabao Wei, 2018. "Numerical Simulation Study on Seepage Theory of a Multi-Section Fractured Horizontal Well in Shale Gas Reservoirs Based on Multi-Scale Flow Mechanisms," Energies, MDPI, vol. 11(9), pages 1-20, September.
    2. Mingxian Wang & Zifei Fan & Guoqiang Xing & Wenqi Zhao & Heng Song & Penghui Su, 2018. "Rate Decline Analysis for Modeling Volume Fractured Well Production in Naturally Fractured Reservoirs," Energies, MDPI, vol. 11(1), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Rogala & Karolina Kucharska & Jan Hupka, 2019. "Shales Leaching Modelling for Prediction of Flowback Fluid Composition," Energies, MDPI, vol. 12(7), pages 1-21, April.
    2. Yan Xi & Jun Li & Gonghui Liu & Jianping Li & Jiwei Jiang, 2019. "Mechanisms and Influence of Casing Shear Deformation near the Casing Shoe, Based on MFC Surveys during Multistage Fracturing in Shale Gas Wells in Canada," Energies, MDPI, vol. 12(3), pages 1-22, January.
    3. Jianchao Cai & Zhien Zhang & Qinjun Kang & Harpreet Singh, 2019. "Recent Advances in Flow and Transport Properties of Unconventional Reservoirs," Energies, MDPI, vol. 12(10), pages 1-5, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long Ren & Wendong Wang & Yuliang Su & Mingqiang Chen & Cheng Jing & Nan Zhang & Yanlong He & Jian Sun, 2018. "Multiporosity and Multiscale Flow Characteristics of a Stimulated Reservoir Volume (SRV)-Fractured Horizontal Well in a Tight Oil Reservoir," Energies, MDPI, vol. 11(10), pages 1-14, October.
    2. Kyoungsu Kim & Jonggeun Choe, 2019. "Hydraulic Fracture Design with a Proxy Model for Unconventional Shale Gas Reservoir with Considering Feasibility Study," Energies, MDPI, vol. 12(2), pages 1-12, January.
    3. Tang, Chao & Zhou, Wen & Chen, Zhangxin & Wei, Jiabao, 2023. "Numerical simulation of CO2 sequestration in shale gas reservoirs at reservoir scale coupled with enhanced gas recovery," Energy, Elsevier, vol. 277(C).
    4. Yu Huang & Mingfeng Ma & Xin Wang & Xiaoping Li, 2022. "A General Model for Analyzing the Unsteady Pressure Performance of Composite Gas Reservoirs," Energies, MDPI, vol. 15(22), pages 1-15, November.
    5. Youwei He & Shiqing Cheng & Zhenhua Rui & Jiazheng Qin & Liang Fu & Jianguo Shi & Yang Wang & Dingyi Li & Shirish Patil & Haiyang Yu & Jun Lu, 2018. "An Improved Rate-Transient Analysis Model of Multi-Fractured Horizontal Wells with Non-Uniform Hydraulic Fracture Properties," Energies, MDPI, vol. 11(2), pages 1-17, February.
    6. Bing Sun & Wenyang Shi & Rui Zhang & Shiqing Cheng & Chengwei Zhang & Shiying Di & Nan Cui, 2020. "Transient Behavior of Vertical Commingled Well in Vertical Non-Uniform Boundary Radii Reservoir," Energies, MDPI, vol. 13(9), pages 1-13, May.
    7. Minxuan Li & Liang Cheng & Dehua Liu & Jiani Hu & Wei Zhang & Kuidong Li & Jialin Xiao & Xiaojun Wang & Feng Zhang, 2021. "Big Data Analysis and Research on Fracturing Construction Parameters of Shale Gas Horizontal Wells—A Case Study of Horizontal Wells in Fuling Demonstration Area, China," Energies, MDPI, vol. 14(24), pages 1-17, December.
    8. Jianchao Cai & Zhien Zhang & Qinjun Kang & Harpreet Singh, 2019. "Recent Advances in Flow and Transport Properties of Unconventional Reservoirs," Energies, MDPI, vol. 12(10), pages 1-5, May.
    9. Guoqiang Xing & Mingxian Wang & Shuhong Wu & Hua Li & Jiangyan Dong & Wenqi Zhao, 2019. "Pseudo-Steady-State Parameters for a Well Penetrated by a Fracture with an Azimuth Angle in an Anisotropic Reservoir," Energies, MDPI, vol. 12(12), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3422-:d:188551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.