IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2224-d165673.html
   My bibliography  Save this article

Methodology for Extracting Potential Customized Bus Routes Based on Bus Smart Card Data

Author

Listed:
  • Jing Li

    (School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

  • Yongbo Lv

    (School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

  • Jihui Ma

    (School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

  • Qi Ouyang

    (School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

Abstract

To alleviate traffic congestion and traffic-related environmental pollution caused by the increasing numbers of private cars, public transport (PT) is highly recommended to travelers. However, there is an obvious contradiction between the diversification of travel demands and simplification of PT service. Customized bus (CB), as an innovative supplementary mode of PT service, aims to provide demand-responsive and direct transit service to travelers with similar travel demands. But how to obtain accurate travel demands? It is passive and limited to conducting online surveys, additionally inefficient and costly to investigate all the origin-destinations (ODs) aimlessly. This paper proposes a methodological framework of extracting potential CB routes from bus smart card data to provide references for CB planners to conduct purposeful and effective investigations. The framework consists of three processes: trip reconstruction, OD area division and CB route extraction. In the OD area division process, a novel two-step division model is built to divide bus stops into different areas. In the CB route extraction process, two spatial-temporal clustering procedures and one length constraint are implemented to cluster similar trips together. An improved density-based spatial clustering of application with noise (DBSCAN) algorithm is used to complete these procedures. In addition, a case study in Beijing is conducted to demonstrate the effectiveness of the proposed methodological framework and the resulting analysis provides useful references to CB planners in Beijing.

Suggested Citation

  • Jing Li & Yongbo Lv & Jihui Ma & Qi Ouyang, 2018. "Methodology for Extracting Potential Customized Bus Routes Based on Bus Smart Card Data," Energies, MDPI, vol. 11(9), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2224-:d:165673
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shyue Koong Chang & Paul M. Schonfeld, 1991. "Optimization Models for Comparing Conventional and Subscription Bus Feeder Services," Transportation Science, INFORMS, vol. 25(4), pages 281-298, November.
    2. Liu, Tao & Ceder, Avishai (Avi), 2015. "Analysis of a new public-transport-service concept: Customized bus in China," Transport Policy, Elsevier, vol. 39(C), pages 63-76.
    3. Guihaire, Valérie & Hao, Jin-Kao, 2008. "Transit network design and scheduling: A global review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1251-1273, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiling Han & Yanyan Chen & Hui Li & Kuanshuang Zhang & Jiyang Sun, 2019. "Customized Bus Network Design Based on Individual Reservation Demands," Sustainability, MDPI, vol. 11(19), pages 1-25, October.
    2. Qing Yu & Weifeng Li & Haoran Zhang & Dongyuan Yang, 2020. "Mobile Phone Data in Urban Customized Bus: A Network-based Hierarchical Location Selection Method with an Application to System Layout Design in the Urban Agglomeration," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    3. Jing Li & Yongbo Lv & Jihui Ma & Yuan Ren, 2019. "Factor Analysis of Customized Bus Attraction to Commuters with Different Travel Modes," Sustainability, MDPI, vol. 11(24), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Huayan & Chang, Yi & Huang, Haijun & Zhao, Fangxia, 2022. "Integration of conventional and customized bus services: An empirical study in Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    2. Liu, Tao & Ceder, Avishai (Avi), 2015. "Analysis of a new public-transport-service concept: Customized bus in China," Transport Policy, Elsevier, vol. 39(C), pages 63-76.
    3. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    4. Chen, Peng (Will) & Nie, Yu (Marco), 2018. "Optimal design of demand adaptive paired-line hybrid transit: Case of radial route structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 71-89.
    5. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem & Yacine Rekik, 2022. "Environmental and social implications of incorporating carpooling service on a customized bus system," Post-Print hal-03598768, HAL.
    6. Ouyang, Yanfeng & Nourbakhsh, Seyed Mohammad & Cassidy, Michael J., 2014. "Continuum approximation approach to bus network design under spatially heterogeneous demand," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 333-344.
    7. Xuekai Cen & Kanghui Ren & Yiying Cai & Qun Chen, 2023. "Designing Flexible-Bus System with Ad-Hoc Service Using Travel-Demand Clustering," Mathematics, MDPI, vol. 11(4), pages 1-27, February.
    8. Wu, Jiaming & Kulcsár, Balázs & Selpi, & Qu, Xiaobo, 2021. "A modular, adaptive, and autonomous transit system (MAATS): A in-motion transfer strategy and performance evaluation in urban grid transit networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 81-98.
    9. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    10. van Wee, Bert & Bohte, Wendy & Molin, Eric & Arentze, Theo & Liao, Feixiong, 2014. "Policies for synchronization in the transport–land-use system," Transport Policy, Elsevier, vol. 31(C), pages 1-9.
    11. Zhang, Jie & Wang, David Z.W. & Meng, Meng, 2018. "Which service is better on a linear travel corridor: Park & ride or on-demand public bus?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 803-818.
    12. Cao, Zhejing & Zhang, Xiaohu & Chua, Kelman & Yu, Honghai & Zhao, Jinhua, 2021. "E-scooter sharing to serve short-distance transit trips: A Singapore case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 177-196.
    13. Lei, Chao & Ouyang, Yanfeng, 2024. "Average minimum distance to visit a subset of random points in a compact region," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    14. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    15. Luca Quadrifoglio & Randolph W. Hall & Maged M. Dessouky, 2006. "Performance and Design of Mobility Allowance Shuttle Transit Services: Bounds on the Maximum Longitudinal Velocity," Transportation Science, INFORMS, vol. 40(3), pages 351-363, August.
    16. Kim, Myungseob (Edward) & Schonfeld, Paul, 2015. "Maximizing net benefits for conventional and flexible bus services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 116-133.
    17. Weckström, Christoffer & Mladenović, Miloš N. & Kujala, Rainer & Saramäki, Jari, 2021. "Navigability assessment of large-scale redesigns in nine public transport networks: Open timetable data approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 212-229.
    18. Lee, Enoch & Cen, Xuekai & Lo, Hong K., 2022. "Scheduling zonal-based flexible bus service under dynamic stochastic demand and Time-dependent travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    19. Kim, Myungseob (Edward) & Schonfeld, Paul, 2014. "Integration of conventional and flexible bus services with timed transfers," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 76-97.
    20. Magalhães, David José Ahouagi Vaz de & Rivera-Gonzalez, Carlos, 2021. "Car users’ attitudes towards an enhanced bus system to mitigate urban congestion in a developing country," Transport Policy, Elsevier, vol. 110(C), pages 452-464.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2224-:d:165673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.