IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p1944-d160136.html
   My bibliography  Save this article

Prediction of Mud Pressures for the Stability of Wellbores Drilled in Transversely Isotropic Rocks

Author

Listed:
  • Chiara Deangeli

    (DIATI Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Omoruyi Omoman Omwanghe

    (DIATI Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy)

Abstract

Serious borehole instability problems are often related to the presence of weakness planes in rock formations. In this study, we investigated the stability of wellbores drilled along a principal direction and parallel to the weakness planes. We used three different strength criteria (weakness plane model, Hoek and Brown and Nova and Zaninetti) to calculate the mud pressures to avoid slip and tensile failure along the weakness planes. We identified the orientation of the weakness planes that generate the most critical slip condition as a function of the friction angle of the planes. We also identified the range of orientations of the weakness planes that corresponds with the lower mud pressure window. We confirmed the validity of the proposed relationships with comparative stability analyses by using analytical solutions and numerical simulations (Ubiquitous Joint Model, FLAC). We found that the mud pressures calculated with the Hoek and Brown criterion show a particular trend, which cannot be predicted by the weakness plane model. We provided two normalized stability charts to predict mud pressures to prevent slip along the weakness planes in the critical slip condition. Finally, we corroborated our findings by simulating the stability of wellbores drilled in the Pedernales Field (Venezuela) and in oil fields located in Bohai Bay (China).

Suggested Citation

  • Chiara Deangeli & Omoruyi Omoman Omwanghe, 2018. "Prediction of Mud Pressures for the Stability of Wellbores Drilled in Transversely Isotropic Rocks," Energies, MDPI, vol. 11(8), pages 1-31, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1944-:d:160136
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/1944/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/1944/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tianshou Ma & Nian Peng & Zhu Zhu & Qianbing Zhang & Chunhe Yang & Jian Zhao, 2018. "Brazilian Tensile Strength of Anisotropic Rocks: Review and New Insights," Energies, MDPI, vol. 11(2), pages 1-25, January.
    2. Yusong Wu & Xiao Li & Jianming He & Bo Zheng, 2016. "Mechanical Properties of Longmaxi Black Organic-Rich Shale Samples from South China under Uniaxial and Triaxial Compression States," Energies, MDPI, vol. 9(12), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuanliang Yan & Yuanfang Cheng & Fucheng Deng & Ji Tian, 2017. "Permeability Change Caused by Stress Damage of Gas Shale," Energies, MDPI, vol. 10(9), pages 1-11, September.
    2. Minyue Zhou & Yifei Zhang & Runqing Zhou & Jin Hao & Jijin Yang, 2018. "Mechanical Property Measurements and Fracture Propagation Analysis of Longmaxi Shale by Micro-CT Uniaxial Compression," Energies, MDPI, vol. 11(6), pages 1-18, May.
    3. Fatick Nath & Gabriel Aguirre & Edgardo Aguirre, 2023. "Characterizing Complex Deformation, Damage, and Fracture in Heterogeneous Shale Using 3D-DIC," Energies, MDPI, vol. 16(6), pages 1-17, March.
    4. Cheng Cheng & Xiao Li, 2018. "Cyclic Experimental Studies on Damage Evolution Behaviors of Shale Dependent on Structural Orientations and Confining Pressures," Energies, MDPI, vol. 11(1), pages 1-20, January.
    5. Chenji Wei & Liangang Wang & Baozhu Li & Lihui Xiong & Shuangshuang Liu & Jie Zheng & Suming Hu & Hongqing Song, 2018. "A Study of Nonlinear Elasticity Effects on Permeability of Stress Sensitive Shale Rocks Using an Improved Coupled Flow and Geomechanics Model: A Case Study of the Longmaxi Shale in China," Energies, MDPI, vol. 11(2), pages 1-16, February.
    6. Yang Tang & Seisuke Okubo & Jiang Xu & Shoujian Peng, 2018. "Study on the Progressive Failure Characteristics of Coal in Uniaxial and Triaxial Compression Conditions Using 3D-Digital Image Correlation," Energies, MDPI, vol. 11(5), pages 1-13, May.
    7. Guo, Yide & Huang, Linqi & Li, Xibing, 2023. "Experimental investigation of the tensile behavior and acoustic emission characteristics of anisotropic shale under geothermal environment," Energy, Elsevier, vol. 263(PD).
    8. Junchuan Gui & Tianshou Ma & Ping Chen & Heyi Yuan & Zhaoxue Guo, 2018. "Anisotropic Damage to Hard Brittle Shale with Stress and Hydration Coupling," Energies, MDPI, vol. 11(4), pages 1-15, April.
    9. Xianlei Zhu & Qing Li & Guihua Wei & Shizheng Fang, 2020. "Dynamic Tensile Strength of Dry and Saturated Hard Coal under Impact Loading," Energies, MDPI, vol. 13(5), pages 1-14, March.
    10. Seyedalireza Khatibi & Mehdi Ostadhassan & David Tuschel & Thomas Gentzis & Humberto Carvajal-Ortiz, 2018. "Evaluating Molecular Evolution of Kerogen by Raman Spectroscopy: Correlation with Optical Microscopy and Rock-Eval Pyrolysis," Energies, MDPI, vol. 11(6), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1944-:d:160136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.