IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1795-d156940.html
   My bibliography  Save this article

Model Analysis of Solar Thermal System with the Effect of Dust Deposition on the Collectors

Author

Listed:
  • Purevdalai Erdenedavaa

    (Graduate School of Bio Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan)

  • Antonio Rosato

    (Department of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, 81031 Aversa, Italy)

  • Amarbayar Adiyabat

    (School of Engineering and Applied Science, National University of Mongolia, Ulaanbaatar 14200, Mongolia)

  • Atsushi Akisawa

    (Graduate School of Bio Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan)

  • Sergio Sibilio

    (Department of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, 81031 Aversa, Italy)

  • Antonio Ciervo

    (Department of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, 81031 Aversa, Italy)

Abstract

In this study, a TraNsient SYStems (TRNSYS) simulation model for solar thermal systems is developed to assess the potential of solar energy utilization in cold climate zones, such as Ulaanbaatar (Mongolia), which is one of the five cities with the worst air quality in the world. Since air pollution contaminates solar collectors and decreases their efficiency, this model accounts for dust deposition behavior so that the best cleaning time for the collectors can be estimated. The simulation results show that the best cleaning time falls between the middle of January and the beginning of February. In addition, a collector cleaned once during the heating period is estimated to produce 12% more energy compared with a collector that has not been cleaned.

Suggested Citation

  • Purevdalai Erdenedavaa & Antonio Rosato & Amarbayar Adiyabat & Atsushi Akisawa & Sergio Sibilio & Antonio Ciervo, 2018. "Model Analysis of Solar Thermal System with the Effect of Dust Deposition on the Collectors," Energies, MDPI, vol. 11(7), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1795-:d:156940
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1795/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1795/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gary Ampuño & Juan Lata-Garcia & Francisco Jurado, 2020. "Evaluation of Energy Efficiency and the Reduction of Atmospheric Emissions by Generating Electricity from a Solar Thermal Power Generation Plant," Energies, MDPI, vol. 13(3), pages 1-20, February.
    2. Rosato, Antonio & Ciervo, Antonio & Ciampi, Giovanni & Sibilio, Sergio, 2019. "Effects of solar field design on the energy, environmental and economic performance of a solar district heating network serving Italian residential and school buildings," Renewable Energy, Elsevier, vol. 143(C), pages 596-610.
    3. Mohammed Al-Housani & Yusuf Bicer & Muammer Koç, 2019. "Assessment of Various Dry Photovoltaic Cleaning Techniques and Frequencies on the Power Output of CdTe-Type Modules in Dusty Environments," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
    4. Víctor Echarri-Iribarren & Carlos Rizo-Maestre & Fernando Echarri-Iribarren, 2018. "Healthy Climate and Energy Savings: Using Thermal Ceramic Panels and Solar Thermal Panels in Mediterranean Housing Blocks," Energies, MDPI, vol. 11(10), pages 1-32, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1795-:d:156940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.