IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1781-d156689.html
   My bibliography  Save this article

An Online Measurement Method for Insulator Creepage Distance on Transmission Lines

Author

Listed:
  • Jing Huang

    (Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China)

  • Kejian Liu

    (Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China)

  • Dan Zeng

    (Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China)

  • Zhijiang Zhang

    (Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China)

Abstract

Insulators play a crucial role in ensuring the normal operation of the power system, and the creepage distance is an important electrical parameter of insulators. Most available solutions focus mainly on offline measurement methods, and online measurement for insulator creepage distance on transmission lines remains a challenging task. To address this issue and to further improve the corresponding work efficiency, an online measurement method for insulator creepage distance is presented in this paper. Considering the glass material of the insulator and the long measuring distance, this method recognizes the insulator type indirectly by calculating the structural parameters of the insulators based on their geometric features, and then obtaining the creepage distance. Accordingly, a measurement system, which mainly includes an electronic total station and a camera with a telephoto lens, is designed in this paper. Moreover, this paper also proposes an error analysis model aimed at reducing the errors caused by the layout of this system. In the conducted experiments, this proposed method effectively obtains the creepage distance and the error correction model can further improve the measurement accuracy of structural parameters.

Suggested Citation

  • Jing Huang & Kejian Liu & Dan Zeng & Zhijiang Zhang, 2018. "An Online Measurement Method for Insulator Creepage Distance on Transmission Lines," Energies, MDPI, vol. 11(7), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1781-:d:156689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1781/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1781/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yaqi Zhang & Licheng Li & Yongxia Han & Yaoxuan Ruan & Jie Yang & Hansheng Cai & Gang Liu & Yi Zhang & Lei Jia & Yutang Ma, 2018. "Flashover Performance Test with Lightning Impulse and Simulation Analysis of Different Insulators in a 110 kV Double-Circuit Transmission Tower," Energies, MDPI, vol. 11(3), pages 1-13, March.
    2. Yongjie Zhai & Haiyan Cheng & Rui Chen & Qiang Yang & Xiaoxia Li, 2018. "Multi-Saliency Aggregation-Based Approach for Insulator Flashover Fault Detection Using Aerial Images," Energies, MDPI, vol. 11(2), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zahid Ali Siddiqui & Unsang Park, 2020. "A Drone Based Transmission Line Components Inspection System with Deep Learning Technique," Energies, MDPI, vol. 13(13), pages 1-24, June.
    2. Gujing Han & Min He & Mengze Gao & Jinyun Yu & Kaipei Liu & Liang Qin, 2022. "Insulator Breakage Detection Based on Improved YOLOv5," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    3. Jiazheng Lu & Pengkang Xie & Jianping Hu & Zhenglong Jiang & Zhen Fang, 2018. "AC Flashover Performance of 10 kV Rod-Plane Air-Gapped Arresters under Rain Conditions," Energies, MDPI, vol. 11(6), pages 1-11, June.
    4. Jiaming Han & Zhong Yang & Hao Xu & Guoxiong Hu & Chi Zhang & Hongchen Li & Shangxiang Lai & Huarong Zeng, 2020. "Search Like an Eagle: A Cascaded Model for Insulator Missing Faults Detection in Aerial Images," Energies, MDPI, vol. 13(3), pages 1-20, February.
    5. Erika Stracqualursi & Giuseppe Pelliccione & Salvatore Celozzi & Rodolfo Araneo, 2022. "Tower Models for Power Systems Transients: A Review," Energies, MDPI, vol. 15(13), pages 1-40, July.
    6. Jordi-Roger Riba & Francesca Capelli, 2018. "Analysis of Capacitance to Ground Formulas for Different High-Voltage Electrodes," Energies, MDPI, vol. 11(5), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1781-:d:156689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.