IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1753-d156141.html
   My bibliography  Save this article

Influence of Temperature on the Microstructure Deterioration of Sandstone

Author

Listed:
  • Yan-Jun Shen

    (College of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
    State Key Laboratory for Geo-Mechanics and Deep Underground Engineering, China University of Mining & Technology, Xuzhou 211116, China)

  • Yu-Liang Zhang

    (School of Resources and Geosciences, China University of Mining & Technology, Xuzhou 211008, China)

  • Feng Gao

    (State Key Laboratory for Geo-Mechanics and Deep Underground Engineering, China University of Mining & Technology, Xuzhou 211116, China)

  • Geng-She Yang

    (College of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Xing-Ping Lai

    (College of Energy, Xi’an University of Science and Technology, Xi’an 710054, China)

Abstract

Macroscopic properties of sandstone are commonly attributed to the degradation of its microstructure during heating treatment processes. However, few previous studies have focused on comprehensive observations on how the microstructure of sandstone changes with temperature. In this study, a kind of sandstone containing quartz, albite, calcite, and laumontite (little), was collected from Linyi (Shandong Province, China) to observe the microstructure degradation changes with temperature by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and thermo-gravimetric analyses (TGA). Firstly, 10 groups of sandstone samples were heated from 25 °C to 900 °C. Then, some core micro-parameters including lattice constant, full width at half maximum (FWHM), micro-strain, dislocation density, TGA curve changes and failure characteristic of the mineral were analyzed comprehensively. Finally, the underlying mechanism causing the microscopic thermal damage at different temperature intervals was also discussed. The results showed that: (1) quartz, the framework component of this sandstone, underwent an α - to β -phase change over the temperature range from 400 °C to 600 °C. This phenomenon caused the lattice constant, micro-strain, dislocation density and TGA curve to decrease sharply during this interval, leading to the microstructure deterioration of sandstone; (2) calcite underwent a decomposition reaction between 600 °C and 800 °C, and resulted in the XRD pattern peak, lattice constant, micro-strain and TGA curve dropping continuously. It destroyed further the internal microstructure of sandstone and produced numerous inter-granular cracks around quartz crystals; (3) further examination found that the decomposition reactions of minerals presented non-synchronized characteristics due to the different sensitivities of minerals to temperature, which led to thermal stress, thermal fracturing of minerals, and thermal reactions happening in different temperature intervals.

Suggested Citation

  • Yan-Jun Shen & Yu-Liang Zhang & Feng Gao & Geng-She Yang & Xing-Ping Lai, 2018. "Influence of Temperature on the Microstructure Deterioration of Sandstone," Energies, MDPI, vol. 11(7), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1753-:d:156141
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1753/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1753/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheng-Qi Yang & Wen-Ling Tian & Pathegama Gamage Ranjith, 2017. "Failure Mechanical Behavior of Australian Strathbogie Granite at High Temperatures: Insights from Particle Flow Modeling," Energies, MDPI, vol. 10(6), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan-Jun Shen & Xin Hou & Jiang-Qiang Yuan & Chun-Hu Zhao, 2019. "Experimental Study on Temperature Change and Crack Expansion of High Temperature Granite under Different Cooling Shock Treatments," Energies, MDPI, vol. 12(11), pages 1-17, May.
    2. Naseer Muhammad Khan & Kewang Cao & Muhammad Zaka Emad & Sajjad Hussain & Hafeezur Rehman & Kausar Sultan Shah & Faheem Ur Rehman & Aamir Muhammad, 2022. "Development of Predictive Models for Determination of the Extent of Damage in Granite Caused by Thermal Treatment and Cooling Conditions Using Artificial Intelligence," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
    3. Haitham M. Ahmed & Hussin A. M. Ahmed & Sefiu O. Adewuyi, 2021. "Characterization of Microschist Rocks under High Temperature at Najran Area of Saudi Arabia," Energies, MDPI, vol. 14(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Fujian & Wang, Guiling & Hu, Dawei & Liu, Yanguang & Zhou, Hui & Tan, Xianfeng, 2021. "Calibrations of thermo-hydro-mechanical coupling parameters for heating and water-cooling treated granite," Renewable Energy, Elsevier, vol. 168(C), pages 544-558.
    2. Jun He & Quansheng Liu & Zhijun Wu & Yalong Jiang, 2018. "Geothermal-Related Thermo-Elastic Fracture Analysis by Numerical Manifold Method," Energies, MDPI, vol. 11(6), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1753-:d:156141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.