IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1708-d155509.html
   My bibliography  Save this article

A Simplified Calculation Method for Building Envelope Cooling Loads in Central South China

Author

Listed:
  • Ping Wang

    (Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, China
    Faculty of Building Environment and Energy Application Engineering, College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan, Hunan 411105, China)

  • Guangcai Gong

    (Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, China)

  • Yan Zhou

    (Faculty of Architectural, Civil Engineering and Environment, NingBo University, Ningbo, Zhejiang 315211, China)

  • Bin Qin

    (Hunan KURBON Curtain Wall Ltd. Co., Changsha, Hunan 410100, China)

Abstract

The cooling load calculation of building envelopes is important for building design to realize building energy efficiency. A simplified way to predict the building envelope cooling loads is desperately needed to predict the cooling load of building envelopes with various construction layouts and to predict the energy-saving effect of various reconstruction measures for buildings. In light of this need a simplified calculation model for building envelope cooling loads is proposed in this paper. The model is based on dynamic hourly calculations using EnergyPlus. It considers almost all the thermal factors about the building envelope which may affect the building cooling load and it is studied by dimensional analysis. The equivalent window to wall ratio ( EWWR ) and building orientation factor are defined to study the building envelope cooling load. The cooling loads of twenty hypothetical buildings with various envelopes are predicated by EnergyPlus. With the results from EnergyPlus the simplified calculation model is developed by MATLAB. Then the newly developed model is validated by two typical actual buildings located in Central-South China. The results show the model is accurate enough to predict the building envelope cooling loads.

Suggested Citation

  • Ping Wang & Guangcai Gong & Yan Zhou & Bin Qin, 2018. "A Simplified Calculation Method for Building Envelope Cooling Loads in Central South China," Energies, MDPI, vol. 11(7), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1708-:d:155509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Cheng & Xiao, Fu & Zhao, Yang, 2017. "A short-term building cooling load prediction method using deep learning algorithms," Applied Energy, Elsevier, vol. 195(C), pages 222-233.
    2. Mao, Ning & Pan, Dongmei & Song, Mengjie & Li, Zhao & Xu, Yingjie & Deng, Shiming, 2017. "Operating optimization for improved energy consumption of a TAC system affected by nighttime thermal loads of building envelopes," Energy, Elsevier, vol. 133(C), pages 491-501.
    3. Babak Raji & Martin J. Tenpierik & Andy Van den Dobbelsteen, 2017. "Early-Stage Design Considerations for the Energy-Efficiency of High-Rise Office Buildings," Sustainability, MDPI, vol. 9(4), pages 1-28, April.
    4. Ji, Ying & Xu, Peng & Duan, Pengfei & Lu, Xing, 2016. "Estimating hourly cooling load in commercial buildings using a thermal network model and electricity submetering data," Applied Energy, Elsevier, vol. 169(C), pages 309-323.
    5. Wang, Zeyu & Srinivasan, Ravi S., 2017. "A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 796-808.
    6. Kontoleon, K.J. & Eumorfopoulou, E.A., 2008. "The influence of wall orientation and exterior surface solar absorptivity on time lag and decrement factor in the Greek region," Renewable Energy, Elsevier, vol. 33(7), pages 1652-1664.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Khakian & Mehrdad Karimimoshaver & Farshid Aram & Soghra Zoroufchi Benis & Amir Mosavi & Annamaria R. Varkonyi-Koczy, 2020. "Modeling Nearly Zero Energy Buildings for Sustainable Development in Rural Areas," Energies, MDPI, vol. 13(10), pages 1-19, May.
    2. Fang, Xi & Gong, Guangcai & Li, Guannan & Chun, Liang & Li, Wenqiang & Peng, Pei, 2021. "A hybrid deep transfer learning strategy for short term cross-building energy prediction," Energy, Elsevier, vol. 215(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
    2. Fan, Cheng & Sun, Yongjun & Xiao, Fu & Ma, Jie & Lee, Dasheng & Wang, Jiayuan & Tseng, Yen Chieh, 2020. "Statistical investigations of transfer learning-based methodology for short-term building energy predictions," Applied Energy, Elsevier, vol. 262(C).
    3. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    4. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    5. Li, Guannan & Wu, Yubei & Yoon, Sungmin & Fang, Xi, 2024. "Comprehensive transferability assessment of short-term cross-building-energy prediction using deep adversarial network transfer learning," Energy, Elsevier, vol. 299(C).
    6. Fathi, Soheil & Srinivasan, Ravi & Fenner, Andriel & Fathi, Sahand, 2020. "Machine learning applications in urban building energy performance forecasting: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    8. Fu, Guoyin, 2018. "Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system," Energy, Elsevier, vol. 148(C), pages 269-282.
    9. Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Li, Xinyi & Yao, Runming, 2020. "A machine-learning-based approach to predict residential annual space heating and cooling loads considering occupant behaviour," Energy, Elsevier, vol. 212(C).
    11. Zhang, Xiaofeng & Kong, Xiaoying & Yan, Renshi & Liu, Yuting & Xia, Peng & Sun, Xiaoqin & Zeng, Rong & Li, Hongqiang, 2023. "Data-driven cooling, heating and electrical load prediction for building integrated with electric vehicles considering occupant travel behavior," Energy, Elsevier, vol. 264(C).
    12. Abhinandana Boodi & Karim Beddiar & Yassine Amirat & Mohamed Benbouzid, 2022. "Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives," Energies, MDPI, vol. 15(4), pages 1-27, February.
    13. Li, Tao & Liu, Xiangyu & Li, Guannan & Wang, Xing & Ma, Jiangqiaoyu & Xu, Chengliang & Mao, Qianjun, 2024. "A systematic review and comprehensive analysis of building occupancy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    14. Fan, Cheng & Xiao, Fu & Song, Mengjie & Wang, Jiayuan, 2019. "A graph mining-based methodology for discovering and visualizing high-level knowledge for building energy management," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Yun Duan, 2022. "A Novel Interval Energy-Forecasting Method for Sustainable Building Management Based on Deep Learning," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    16. Chen, Yibo & Zhang, Fengyi & Berardi, Umberto, 2020. "Day-ahead prediction of hourly subentry energy consumption in the building sector using pattern recognition algorithms," Energy, Elsevier, vol. 211(C).
    17. Jason Runge & Radu Zmeureanu, 2019. "Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review," Energies, MDPI, vol. 12(17), pages 1-27, August.
    18. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
    19. Amir Shahcheraghian & Adrian Ilinca, 2024. "Advanced Machine Learning Techniques for Energy Consumption Analysis and Optimization at UBC Campus: Correlations with Meteorological Variables," Energies, MDPI, vol. 17(18), pages 1-22, September.
    20. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1708-:d:155509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.