IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1700-d155500.html
   My bibliography  Save this article

Experimental Assessment of the Energy Performance of a Double-Skin Semi-Transparent PV Window in the Hot-Summer and Cold-Winter Zone of China

Author

Listed:
  • Wei Wang

    (College of Architecture and Environment, Sichuan University, Chengdu 610065, China)

  • Wei Zhang

    (College of Architecture and Environment, Sichuan University, Chengdu 610065, China)

  • Lingzhi Xie

    (Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China)

  • Yupeng Wu

    (Department of Architecture and Built Environment, Faculty of Engineering, The University of Nottingham, University Park, Nottingham NG7 2RD, UK)

  • Hao Tian

    (College of Architecture and Environment, Sichuan University, Chengdu 610065, China)

  • Lin Zheng

    (College of Architecture and Environment, Sichuan University, Chengdu 610065, China)

Abstract

The energy performance of the semi-transparent PV (STPV) window was carried out in a hot-summer and cold-winter zone of China. Semi-transparent PV (STPV) windows generate electric, reduce the heating load and aim to utilize daylighting efficiently. In order to analyze the energy performance of semi-transparent windows, a comparison test rig was set up which includes two test rooms of the same size. One room was installed with the STPV window and the other with a conventional window. The lighting, thermal, and electrical performance of STPV window was tested and compared with those of conventional window in the same ambient environment. It was observed that the maximum power generation of the STPV (a-SiGe) window was 33.3 W/m 2 on a typical sunny day. Compared with the conventional windows, the average solar heat gain (SHGC) and U value of STPV windows were 0.15 and 1.6, respectively, which is better than those of conventional window. On a sunny day, the Useful Daylighting Illuminance (UDI) of the test room was up to 52.2% better than the UDI of the conventional room. The results could support the application of photovoltaic technology in buildings in Southwest China.

Suggested Citation

  • Wei Wang & Wei Zhang & Lingzhi Xie & Yupeng Wu & Hao Tian & Lin Zheng, 2018. "Experimental Assessment of the Energy Performance of a Double-Skin Semi-Transparent PV Window in the Hot-Summer and Cold-Winter Zone of China," Energies, MDPI, vol. 11(7), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1700-:d:155500
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1700/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, K.E. & Kang, G.H. & Kim, H.I. & Yu, G.J. & Kim, J.T., 2010. "Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module," Energy, Elsevier, vol. 35(6), pages 2681-2687.
    2. Wang, Meng & Peng, Jinqing & Li, Nianping & Lu, Lin & Ma, Tao & Yang, Hongxing, 2016. "Assessment of energy performance of semi-transparent PV insulating glass units using a validated simulation model," Energy, Elsevier, vol. 112(C), pages 538-548.
    3. Fokaides, Paris A. & Kalogirou, Soteris A., 2011. "Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes," Applied Energy, Elsevier, vol. 88(12), pages 4358-4365.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jianhui & Zhang, Wei & He, Bo & Xie, Lingzhi & Hao, Xia & Mallick, Tapas & Shanks, Katie & Chen, Mo & Li, Zihao, 2021. "Experimental study on the comprehensive performance of building curtain wall integrated compound parabolic concentrating photovoltaic," Energy, Elsevier, vol. 227(C).
    2. Wei Zhang & Wei Wang & Lingzhi Xie & Hao Tian & Mo Chen & Zihao Li & Jianhui Li, 2020. "Cross-seasonal Experimental Study on the Comprehensive Performance of C-Si PV Window," Energies, MDPI, vol. 13(21), pages 1-26, October.
    3. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    4. Chen, Mo & Zhang, Wei & Xie, Lingzhi & Ni, Zhichun & Wei, Qingzhu & Wang, Wei & Tian, Hao, 2019. "Experimental and numerical evaluation of the crystalline silicon PV window under the climatic conditions in southwest China," Energy, Elsevier, vol. 183(C), pages 584-598.
    5. Wang, Chuyao & Ji, Jie & Yu, Bendong & Zhang, Chengyan & Ke, Wei & Wang, Jun, 2022. "Comprehensive investigation on the luminous and energy-saving performance of the double-skin ventilated window integrated with CdTe cells," Energy, Elsevier, vol. 238(PB).
    6. Hao Tian & Wei Zhang & Lingzhi Xie & Zhichun Ni & Qingzhu Wei & Xinwen Wu & Wei Wang & Mo Chen, 2019. "Thermal Comfort Evaluation of Rooms Installed with STPV Windows," Energies, MDPI, vol. 12(5), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    2. Luo, Yongqiang & Zhang, Ling & Wang, Xiliang & Xie, Lei & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & He, Xihua, 2017. "A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds," Applied Energy, Elsevier, vol. 199(C), pages 281-293.
    3. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    4. Wang, Chuyao & Yang, Hongxing & Ji, Jie, 2023. "Investigation on overall energy performance of a novel multi-functional PV/T window," Applied Energy, Elsevier, vol. 352(C).
    5. Luo, Yongqiang & Zhang, Ling & Bozlar, Michael & Liu, Zhongbing & Guo, Hongshan & Meggers, Forrest, 2019. "Active building envelope systems toward renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 470-491.
    6. Wang, Meng & Peng, Jinqing & Li, Nianping & Yang, Hongxing & Wang, Chunlei & Li, Xue & Lu, Tao, 2017. "Comparison of energy performance between PV double skin facades and PV insulating glass units," Applied Energy, Elsevier, vol. 194(C), pages 148-160.
    7. Wei Zhang & Wei Wang & Lingzhi Xie & Hao Tian & Mo Chen & Zihao Li & Jianhui Li, 2020. "Cross-seasonal Experimental Study on the Comprehensive Performance of C-Si PV Window," Energies, MDPI, vol. 13(21), pages 1-26, October.
    8. Joaquim Romaní & Alba Ramos & Jaume Salom, 2022. "Review of Transparent and Semi-Transparent Building-Integrated Photovoltaics for Fenestration Application Modeling in Building Simulations," Energies, MDPI, vol. 15(9), pages 1-30, April.
    9. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & Wu, Zhenghong, 2018. "Numerical evaluation on energy saving potential of a solar photovoltaic thermoelectric radiant wall system in cooling dominant climates," Energy, Elsevier, vol. 142(C), pages 384-399.
    10. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    11. Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
    12. Fokaides, Paris A. & Jurelionis, Andrius & Gagyte, Laura & Kalogirou, Soteris A., 2016. "Mock target IR thermography for indoor air temperature measurement," Applied Energy, Elsevier, vol. 164(C), pages 676-685.
    13. Luca Evangelisti & Leone Barbaro & Claudia Guattari & Edoardo De Cristo & Roberto De Lieto Vollaro & Francesco Asdrubali, 2024. "Comparison between Direct and Indirect Heat Flux Measurement Techniques: Preliminary Laboratory Tests," Energies, MDPI, vol. 17(12), pages 1-16, June.
    14. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    15. Moh’d Al-Nimr & Abdallah Milhem & Basel Al-Bishawi & Khaleel Al Khasawneh, 2020. "Integrating Transparent and Conventional Solar Cells TSC/SC," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    16. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).
    17. Blanca Tejedor & Eva Barreira & Vasco Peixoto de Freitas & Tomasz Kisilewicz & Katarzyna Nowak-Dzieszko & Umberto Berardi, 2020. "Impact of Stationary and Dynamic Conditions on the U-Value Measurements of Heavy-Multi Leaf Walls by Quantitative IRT," Energies, MDPI, vol. 13(24), pages 1-19, December.
    18. Doo Sung Choi & Myeong Jin Ko, 2017. "Comparison of Various Analysis Methods Based on Heat Flowmeters and Infrared Thermography Measurements for the Evaluation of the In Situ Thermal Transmittance of Opaque Exterior Walls," Energies, MDPI, vol. 10(7), pages 1-22, July.
    19. Rasooli, Arash & Itard, Laure, 2019. "In-situ rapid determination of walls’ thermal conductivity, volumetric heat capacity, and thermal resistance, using response factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Younghoon Kwak & Jeonga Kang & Sun-Hye Mun & Young-Sun Jeong & Jung-Ho Huh, 2020. "Development and Application of a Flexible Modeling Approach to Reference Buildings for Energy Analysis," Energies, MDPI, vol. 13(21), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1700-:d:155500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.