IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1589-d153026.html
   My bibliography  Save this article

Approaches for Safety Analysis of Gas-Pipeline Functionality in Terms of Failure Occurrence: A Case Study

Author

Listed:
  • Barbara Tchórzewska-Cieślak

    (Faculty of Civil and Environmental Engineering, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

  • Katarzyna Pietrucha-Urbanik

    (Faculty of Civil and Environmental Engineering, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

  • Marek Urbanik

    (Faculty of Civil and Environmental Engineering, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

  • Janusz R. Rak

    (Faculty of Civil and Environmental Engineering, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

Abstract

The development of appropriate assessment methods of gas-pipeline functionality contributes to the reduction of failure consequences and helps engineers to make the right decisions as to the optimal solution choice for technical facilities, as well as provides procedures to protect their users and the surrounding environment. This paper presents methods for the assessment of gas network operation. Pipe failure data were collected from a gas distribution network. A statistical analysis of the failure of gas networks was made. An attempt was made to isolate seasonal and accidental fluctuations in the tested failure stream. The Poisson distribution was proposed as a model of failure distribution of gas networks. The conducted analysis allowed us to propose the forecasting method of acceptable failure consequences using the homogeneous Markov chain. The obtained results are valuable for supporting the management of urban gas networks, mainly in terms of the strategic modernization plans and the rehabilitation techniques.

Suggested Citation

  • Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik & Marek Urbanik & Janusz R. Rak, 2018. "Approaches for Safety Analysis of Gas-Pipeline Functionality in Terms of Failure Occurrence: A Case Study," Energies, MDPI, vol. 11(6), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1589-:d:153026
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1589/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1589/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, Weiwei & Su, Meirong & Fath, Brian D. & Zhang, Mingqi & Hao, Yan, 2016. "A systematic method of evaluation of the Chinese natural gas supply security," Applied Energy, Elsevier, vol. 165(C), pages 858-867.
    2. Geng, Jiang-Bo & Ji, Qiang & Fan, Ying, 2014. "A dynamic analysis on global natural gas trade network," Applied Energy, Elsevier, vol. 132(C), pages 23-33.
    3. Abada, Ibrahim & Massol, Olivier, 2011. "Security of supply and retail competition in the European gas market.: Some model-based insights," Energy Policy, Elsevier, vol. 39(7), pages 4077-4088, July.
    4. Flouri, Maria & Karakosta, Charikleia & Kladouchou, Charikleia & Psarras, John, 2015. "How does a natural gas supply interruption affect the EU gas security? A Monte Carlo simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 785-796.
    5. Biresselioglu, Mehmet Efe & Yelkenci, Tezer & Oz, Ibrahim Onur, 2015. "Investigating the natural gas supply security: A new perspective," Energy, Elsevier, vol. 80(C), pages 168-176.
    6. Costantini, Valeria & Gracceva, Francesco & Markandya, Anil & Vicini, Giorgio, 2007. "Security of energy supply: Comparing scenarios from a European perspective," Energy Policy, Elsevier, vol. 35(1), pages 210-226, January.
    7. Marta P. Fernandes & Joaquim L. Viegas & Susana M. Vieira & João M. C. Sousa, 2017. "Segmentation of Residential Gas Consumers Using Clustering Analysis," Energies, MDPI, vol. 10(12), pages 1-26, December.
    8. Fu, Xueqian & Zhang, Xiurong, 2018. "Failure probability estimation of gas supply using the central moment method in an integrated energy system," Applied Energy, Elsevier, vol. 219(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Zhang & Guojin Qin & Yihuan Wang, 2018. "Optimal Maintenance Decision Method for Urban Gas Pipelines Based on as Low as Reasonably Practicable Principle," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    2. Ruud van der Linden & Ryvo Octaviano & Huib Blokland & Tom Busking, 2021. "Security of Supply in Gas and Hybrid Energy Networks," Energies, MDPI, vol. 14(4), pages 1-15, February.
    3. Marco Cinelli & Matteo Spada & Miłosz Kadziński & Grzegorz Miebs & Peter Burgherr, 2019. "Advancing Hazard Assessment of Energy Accidents in the Natural Gas Sector with Rough Set Theory and Decision Rules," Energies, MDPI, vol. 12(21), pages 1-17, November.
    4. Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik, 2018. "Approaches to Methods of Risk Analysis and Assessment Regarding the Gas Supply to a City," Energies, MDPI, vol. 11(12), pages 1-13, November.
    5. Balali, Amirhossein & Valipour, Alireza & Edwards, Rodger & Moehler, Robert, 2021. "Ranking effective risks on human resources threats in natural gas supply projects using ANP-COPRAS method: Case study of Shiraz," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    6. Marek Urbanik & Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik, 2019. "Analysis of the Safety of Functioning Gas Pipelines in Terms of the Occurrence of Failures," Energies, MDPI, vol. 12(17), pages 1-13, August.
    7. Vadim Fetisov & Aleksey V. Shalygin & Svetlana A. Modestova & Vladimir K. Tyan & Changjin Shao, 2022. "Development of a Numerical Method for Calculating a Gas Supply System during a Period of Change in Thermal Loads," Energies, MDPI, vol. 16(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik, 2018. "Approaches to Methods of Risk Analysis and Assessment Regarding the Gas Supply to a City," Energies, MDPI, vol. 11(12), pages 1-13, November.
    2. Lu, Weiwei & Su, Meirong & Fath, Brian D. & Zhang, Mingqi & Hao, Yan, 2016. "A systematic method of evaluation of the Chinese natural gas supply security," Applied Energy, Elsevier, vol. 165(C), pages 858-867.
    3. Mingjing Guo & Yan Bu & Jinhua Cheng & Ziyu Jiang, 2018. "Natural Gas Security in China: A Simulation of Evolutionary Trajectory and Obstacle Degree Analysis," Sustainability, MDPI, vol. 11(1), pages 1-18, December.
    4. Xuejie Li & Yuan Xue & Yuxing Li & Qingshan Feng, 2022. "An Optimization Method for a Compressor Standby Scheme Based on Reliability Analysis," Energies, MDPI, vol. 15(21), pages 1-16, November.
    5. Gong, Chengzhu & Gong, Nianjiao & Qi, Rui & Yu, Shiwei, 2020. "Assessment of natural gas supply security in Asia Pacific: Composite indicators with compromise Benefit-of-the-Doubt weights," Resources Policy, Elsevier, vol. 67(C).
    6. Bompard, E. & Carpignano, A. & Erriquez, M. & Grosso, D. & Pession, M. & Profumo, F., 2017. "National energy security assessment in a geopolitical perspective," Energy, Elsevier, vol. 130(C), pages 144-154.
    7. Ding, Yueting & Zhang, Ming & Chen, Sai & Nie, Rui, 2020. "Assessing the resilience of China’s natural gas importation under network disruptions," Energy, Elsevier, vol. 211(C).
    8. Marek Urbanik & Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik, 2019. "Analysis of the Safety of Functioning Gas Pipelines in Terms of the Occurrence of Failures," Energies, MDPI, vol. 12(17), pages 1-13, August.
    9. Yu, Weichao & Gong, Jing & Song, Shangfei & Huang, Weihe & Li, Yichen & Zhang, Jie & Hong, Bingyuan & Zhang, Ye & Wen, Kai & Duan, Xu, 2019. "Gas supply reliability analysis of a natural gas pipeline system considering the effects of underground gas storages," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    10. Su, Meirong & Zhang, Mingqi & Lu, Weiwei & Chang, Xin & Chen, Bin & Liu, Gengyuan & Hao, Yan & Zhang, Yan, 2017. "ENA-based evaluation of energy supply security: Comparison between the Chinese crude oil and natural gas supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 888-899.
    11. Balali, Amirhossein & Valipour, Alireza & Edwards, Rodger & Moehler, Robert, 2021. "Ranking effective risks on human resources threats in natural gas supply projects using ANP-COPRAS method: Case study of Shiraz," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    12. Long Zhang & Wuliyasu Bai, 2020. "Risk Assessment of China’s Natural Gas Importation: A Supply Chain Perspective," SAGE Open, , vol. 10(3), pages 21582440209, July.
    13. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
    14. Böhringer, Christoph & Bortolamedi, Markus, 2015. "Sense and no(n)-sense of energy security indicators," Ecological Economics, Elsevier, vol. 119(C), pages 359-371.
    15. Lunz, Benedikt & Stöcker, Philipp & Eckstein, Sascha & Nebel, Arjuna & Samadi, Sascha & Erlach, Berit & Fischedick, Manfred & Elsner, Peter & Sauer, Dirk Uwe, 2016. "Scenario-based comparative assessment of potential future electricity systems – A new methodological approach using Germany in 2050 as an example," Applied Energy, Elsevier, vol. 171(C), pages 555-580.
    16. Xie, Minghua & Min, Jialin & Fang, Xingming & Sun, Chuanwang & Zhang, Zhen, 2022. "Policy selection based on China's natural gas security evaluation and comparison," Energy, Elsevier, vol. 247(C).
    17. Sutrisno, Aziiz & Nomaler, Ӧnder & Alkemade, Floor, 2021. "Has the global expansion of energy markets truly improved energy security?," Energy Policy, Elsevier, vol. 148(PA).
    18. Cabrales, Sergio & Valencia, Carlos & Ramírez, Carlos & Ramírez, Andrés & Herrera, Juan & Cadena, Angela, 2022. "Stochastic cost-benefit analysis to assess new infrastructure to improve the reliability of the natural gas supply," Energy, Elsevier, vol. 246(C).
    19. Fu, Xueqian & Li, Gengyin & Zhang, Xiurong & Qiao, Zheng, 2018. "Failure probability estimation of the gas supply using a data-driven model in an integrated energy system," Applied Energy, Elsevier, vol. 232(C), pages 704-714.
    20. Dastan, Seyit Ali & Selcuk, Orhun, 2016. "Review of the security of supply in Turkish energy markets: Lessons from the winter shortages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 958-971.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1589-:d:153026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.