IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1457-d150763.html
   My bibliography  Save this article

Optimal Planning Method of On-load Capacity Regulating Distribution Transformers in Urban Distribution Networks after Electric Energy Replacement Considering Uncertainties

Author

Listed:
  • Yu Su

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology; Chongqing University, Chongqing 400044, China)

  • Niancheng Zhou

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology; Chongqing University, Chongqing 400044, China)

  • Qianggang Wang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology; Chongqing University, Chongqing 400044, China)

  • Chao Lei

    (State Grid Sichuan Electric Power Company Tianfu Power Supply Company, Chengdu 610000, China)

  • Jian Fang

    (China Southern Power Grid Guangzhou Power Supply Co., Ltd., Guangzhou 510000, China)

Abstract

Electric energy replacement is the umbrella term for the use of electric energy to replace oil (e.g., electric automobiles), coal (e.g., electric heating), and gas (e.g., electric cooking appliances), which increases the electrical load peak, causing greater valley/peak differences. On-load capacity regulating distribution transformers have been used to deal with loads with great valley/peak differences, so reasonably replacing conventional distribution transformers with on-load capacity regulating distribution transformers can effectively cope with load changes after electric energy replacement and reduce the no-load losses of distribution transformers. Before planning for on-load capacity regulating distribution transformers, the nodal effective load considering uncertainties within the life cycle after electric energy replacement was obtained by a Monte Carlo method. Then, according to the loss relation between on-load capacity regulating distribution transformers and conventional distribution transformers, three characteristic indexes of annual continuous apparent power curve and replacement criteria for on-load capacity regulating distribution transformers were put forward in this paper, and a set of distribution transformer replaceable points was obtained. Next, based on cost benefit analysis, a planning model of on-load capacity regulating distribution transformers which consists of investment profitability index within the life cycle, investment cost recouping index and capacity regulating cost index was put forward. The branch and bound method was used to solve the planning model within replaceable point set to obtain upgrading and reconstruction scheme of distribution transformers under a certain investment. Finally, planning analysis of on-load capacity regulating distribution transformers was carried out for electric energy replacement points in one urban distribution network under three scenes: certain load, uncertain load and nodal effective load considering uncertainties. Results showed that the planning method of on-load capacity regulating distribution transformers proposed in this paper was very feasible and is of great guiding significance to distribution transformer planning after electric energy replacement and the popularization of on-load capacity regulating distribution transformers.

Suggested Citation

  • Yu Su & Niancheng Zhou & Qianggang Wang & Chao Lei & Jian Fang, 2018. "Optimal Planning Method of On-load Capacity Regulating Distribution Transformers in Urban Distribution Networks after Electric Energy Replacement Considering Uncertainties," Energies, MDPI, vol. 11(6), pages 1-25, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1457-:d:150763
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1457/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1457/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yohan Shim & Marte Fodstad & Steven Gabriel & Asgeir Tomasgard, 2013. "A branch-and-bound method for discretely-constrained mathematical programs with equilibrium constraints," Annals of Operations Research, Springer, vol. 210(1), pages 5-31, November.
    2. Chiodo, Elio & Lauria, Davide & Mottola, Fabio & Pisani, Cosimo, 2016. "Lifetime characterization via lognormal distribution of transformers in smart grids: Design optimization," Applied Energy, Elsevier, vol. 177(C), pages 127-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sung-Min Cho & Jin-Su Kim & Jae-Chul Kim, 2019. "Optimal Operation Parameter Estimation of Energy Storage for Frequency Regulation," Energies, MDPI, vol. 12(9), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ildar Daminov & Rémy Rigo-Mariani & Raphael Caire & Anton Prokhorov & Marie-Cécile Alvarez-Hérault, 2021. "Demand Response Coupled with Dynamic Thermal Rating for Increased Transformer Reserve and Lifetime," Energies, MDPI, vol. 14(5), pages 1-27, March.
    2. Hecheng Li, 2015. "A genetic algorithm using a finite search space for solving nonlinear/linear fractional bilevel programming problems," Annals of Operations Research, Springer, vol. 235(1), pages 543-558, December.
    3. Emmanuel Ogbe & Xiang Li, 2019. "A joint decomposition method for global optimization of multiscenario nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 75(3), pages 595-629, November.
    4. Yogendra Pandey & S. K. Mishra, 2018. "Optimality conditions and duality for semi-infinite mathematical programming problems with equilibrium constraints, using convexificators," Annals of Operations Research, Springer, vol. 269(1), pages 549-564, October.
    5. Kerstin Dächert & Sauleh Siddiqui & Javier Saez-Gallego & Steven A. Gabriel & Juan Miguel Morales, 2019. "A Bicriteria Perspective on L-Penalty Approaches – a Corrigendum to Siddiqui and Gabriel’s L-Penalty Approach for Solving MPECs," Networks and Spatial Economics, Springer, vol. 19(4), pages 1199-1214, December.
    6. Yasir Yaqoob & Arjuna Marzuki & Ching-Ming Lai & Jiashen Teh, 2022. "Fuzzy Dynamic Thermal Rating System-Based Thermal Aging Model for Transmission Lines," Energies, MDPI, vol. 15(12), pages 1-23, June.
    7. Maurizio Fantauzzi & Davide Lauria & Fabio Mottola & Daniela Proto, 2021. "Estimating Wind Farm Transformers Rating through Lifetime Characterization Based on Stochastic Modeling of Wind Power," Energies, MDPI, vol. 14(5), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1457-:d:150763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.