IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1404-d149833.html
   My bibliography  Save this article

Biomass Feedstock and Climate Change in Agroforestry Systems: Participatory Location and Integration Scenario Analysis of Biomass Power Facilities

Author

Listed:
  • Jin Su Jeong

    (Departamento de Ingeniería Mecánica, Química y Diseño Industrial, Escuela Técnica Superior de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain)

Abstract

Producing energy with biomass feedstocks as a renewable energy source can contribute to the mitigation of climate change through direct CO 2 sequestration and higher CO 2 -emitting fuel replacement. Here, the correct location of a biomass power facility can be considered as a critical position due to their geographical and spatial characteristic. This research presents a novel approach involving a geographic information system (GIS) location and its integration scenario analysis with the consideration of biomass feedstocks and climate change in agroforestry systems, the agro-silvo-pastoral system (ASPS), of a Spanish case study. A combined participatory operative approach, that is, fuzzy-decision-making trial and evaluation laboratory (F-DEMATEL) with simple additive weighting (SAW) and sensitivity analysis in various disciplines and criteria, is applied by professionals. In particular, an analysis of five biomass power facilities in the area assessed by the methodology found that only one facility (BPF4) is located in the suitable area. Among five integration scenarios (A to E) as the likelihood test by the stakeholders, scenario E (suitability layer) was most supported—that is, it was selected as the most suitability map—while scenario D (general geophysical layer) was least supported, in that the results encapsulated foreseeable problems derived from the effects. Hence, the validation of the methodology proposed can be employed as a decision-making tool to support proper sustainable planning and development of a biomass power facility under the impact of climate change.

Suggested Citation

  • Jin Su Jeong, 2018. "Biomass Feedstock and Climate Change in Agroforestry Systems: Participatory Location and Integration Scenario Analysis of Biomass Power Facilities," Energies, MDPI, vol. 11(6), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1404-:d:149833
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1404/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1404/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Viana, H. & Cohen, Warren B. & Lopes, D. & Aranha, J., 2010. "Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal," Applied Energy, Elsevier, vol. 87(8), pages 2551-2560, August.
    2. Sahoo, K. & Hawkins, G.L. & Yao, X.A. & Samples, K. & Mani, S., 2016. "GIS-based biomass assessment and supply logistics system for a sustainable biorefinery: A case study with cotton stalks in the Southeastern US," Applied Energy, Elsevier, vol. 182(C), pages 260-273.
    3. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2010. "Sustainability considerations for electricity generation from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1419-1427, June.
    4. Manos, Basil & Partalidou, Maria & Fantozzi, Francesco & Arampatzis, Stratos & Papadopoulou, Olympia, 2014. "Agro-energy districts contributing to environmental and social sustainability in rural areas: Evaluation of a local public–private partnership scheme in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 85-95.
    5. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Nor, Khalil M.D. & Khoshnoudi, Masoumeh, 2016. "Using fuzzy multiple criteria decision making approaches for evaluating energy saving technologies and solutions in five star hotels: A new hierarchical framework," Energy, Elsevier, vol. 117(P1), pages 131-148.
    6. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    7. Paredes-Sánchez, José P. & García-Elcoro, Víctor E. & Rosillo-Calle, Frank & Xiberta-Bernat, Jorge, 2016. "Assessment of forest bioenergy potential in a coal-producing area in Asturias (Spain) and recommendations for setting up a Biomass Logistic Centre (BLC)," Applied Energy, Elsevier, vol. 171(C), pages 133-141.
    8. Vera, David & Carabias, Julio & Jurado, Francisco & Ruiz-Reyes, Nicolás, 2010. "A Honey Bee Foraging approach for optimal location of a biomass power plant," Applied Energy, Elsevier, vol. 87(7), pages 2119-2127, July.
    9. Velazquez-Marti, B. & Fernandez-Gonzalez, E., 2010. "Mathematical algorithms to locate factories to transform biomass in bioenergy focused on logistic network construction," Renewable Energy, Elsevier, vol. 35(9), pages 2136-2142.
    10. Manos, Basil & Bartocci, Pietro & Partalidou, Maria & Fantozzi, Francesco & Arampatzis, Stratos, 2014. "Review of public–private partnerships in agro-energy districts in Southern Europe: The cases of Greece and Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 667-678.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Su Jeong & Álvaro Ramírez-Gómez, 2017. "A Multicriteria GIS-Based Assessment to Optimize Biomass Facility Sites with Parallel Environment—A Case Study in Spain," Energies, MDPI, vol. 10(12), pages 1-14, December.
    2. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    3. Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2011. "Forest biomass supply logistics for a power plant using the discrete-event simulation approach," Applied Energy, Elsevier, vol. 88(4), pages 1241-1250, April.
    4. Fantozzi, F. & Frassoldati, A. & Bartocci, P. & Cinti, G. & Quagliarini, F. & Bidini, G. & Ranzi, E.M., 2016. "An experimental and kinetic modeling study of glycerol pyrolysis," Applied Energy, Elsevier, vol. 184(C), pages 68-76.
    5. Mahmoud A. Sharara & Sammy S. Sadaka, 2018. "Opportunities and Barriers to Bioenergy Conversion Techniques and Their Potential Implementation on Swine Manure," Energies, MDPI, vol. 11(4), pages 1-26, April.
    6. Fernando López-Rodríguez & Justo García Sanz-Calcedo & Francisco J. Moral-García, 2019. "Spatial Analysis of Residual Biomass and Location of Future Storage Centers in the Southwest of Europe," Energies, MDPI, vol. 12(10), pages 1-16, May.
    7. Scott, James A. & Ho, William & Dey, Prasanta K., 2012. "A review of multi-criteria decision-making methods for bioenergy systems," Energy, Elsevier, vol. 42(1), pages 146-156.
    8. De Laporte, Aaron V. & Weersink, Alfons J. & McKenney, Daniel W., 2016. "Effects of supply chain structure and biomass prices on bioenergy feedstock supply," Applied Energy, Elsevier, vol. 183(C), pages 1053-1064.
    9. Fabián Almonacid, 2018. "Bioenergy in an Agroforestry Economy under Crisis: Complement and Conflict. La Araucanía, Chile, 1990–2016," Sustainability, MDPI, vol. 10(12), pages 1-19, November.
    10. Brown, Alistair, 2016. "The need for improved financial reporting of a developing country energy utility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1448-1454.
    11. Sena, Kenton & Ochuodho, Thomas O. & Agyeman, Domena A. & Contreras, Marco & Niman, Chad & Eaton, Dan & Yang, Jian, 2022. "Wood bioenergy for rural energy resilience: Suitable site selection and potential economic impacts in Appalachian Kentucky," Forest Policy and Economics, Elsevier, vol. 145(C).
    12. Jianliang Wang & Yuru Yang & Yongmei Bentley & Xu Geng & Xiaojie Liu, 2018. "Sustainability Assessment of Bioenergy from a Global Perspective: A Review," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    13. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    14. Lim, Chun Hsion & Lam, Hon Loong & Ng, Wendy Pei Qin, 2018. "A novel HAZOP approach for literature review on biomass supply chain optimisation model," Energy, Elsevier, vol. 146(C), pages 13-25.
    15. Efthymios Rodias & Remigio Berruto & Dionysis Bochtis & Alessandro Sopegno & Patrizia Busato, 2019. "Green, Yellow, and Woody Biomass Supply-Chain Management: A Review," Energies, MDPI, vol. 12(15), pages 1-22, August.
    16. Octávio Alves & Luís Calado & Roberta M. Panizio & Catarina Nobre & Eliseu Monteiro & Paulo Brito & Margarida Gonçalves, 2022. "Gasification of Solid Recovered Fuels with Variable Fractions of Polymeric Materials," Energies, MDPI, vol. 15(21), pages 1-19, November.
    17. Li Chenguang & Hlatká Martina, 2017. "Identification of the Area for Proper Integration of Three Current Storage Objects into One Complex Logistics Point," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 8(1), pages 38-47, May.
    18. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    19. Lourinho, Gonçalo & Brito, Paulo, 2015. "Assessment of biomass energy potential in a region of Portugal (Alto Alentejo)," Energy, Elsevier, vol. 81(C), pages 189-201.
    20. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1404-:d:149833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.