IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1319-d148312.html
   My bibliography  Save this article

Breakdown Characteristics of Oil-Pressboard Insulation under AC-DC Combined Voltage and Its Mathematical Model

Author

Listed:
  • Qingguo Chen

    (Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, 52 Xuefu Road, Harbin 150080, China
    The School of Electrical and Electronics Engineering, Harbin University of Science and Technology, 52 Xuefu Road, Harbin 150080, China)

  • Jinfeng Zhang

    (Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, 52 Xuefu Road, Harbin 150080, China
    The School of Electrical and Electronics Engineering, Harbin University of Science and Technology, 52 Xuefu Road, Harbin 150080, China)

  • Minghe Chi

    (Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, 52 Xuefu Road, Harbin 150080, China
    The School of Electrical and Electronics Engineering, Harbin University of Science and Technology, 52 Xuefu Road, Harbin 150080, China)

  • Chong Guo

    (The School of Electrical and Electronics Engineering, Harbin University of Science and Technology, 52 Xuefu Road, Harbin 150080, China)

Abstract

An AC-DC combined voltage is applied to the oil-pressboard insulation near the valve side during the operation of a converter transformer. To study the breakdown characteristics of an oil-pressboard insulation under such voltages, a typical plate electrode structure was employed in the laboratory to conduct a breakdown test on the oil-pressboard insulation. The electrical field distribution and the DC contents of the transformer oil and the pressboard in composite insulation under the AC-DC combined voltage were simulated by their dielectric parameters. The breakdown strength of the transformer oil decreases with the increase in the DC content of the applied voltage, whereas that of the pressboard increases. For the oil-pressboard insulation, the breakdown voltage increases first and then decreases. The electric field strength decreases in the transformer oil with the increase in the DC content, whereas it increases in the pressboard. And the DC contents of the transformer and the pressboard in composite insulation were different from that of the applied voltage. Finally, based on the above results, a mathematical model was proposed to describe the breakdown characteristics of the oil-pressboard insulation under the AC-DC combined voltage; the theoretical and experimental results were in good agreement.

Suggested Citation

  • Qingguo Chen & Jinfeng Zhang & Minghe Chi & Chong Guo, 2018. "Breakdown Characteristics of Oil-Pressboard Insulation under AC-DC Combined Voltage and Its Mathematical Model," Energies, MDPI, vol. 11(5), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1319-:d:148312
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1319/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1319/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Zhang & Feipeng Wang & Jian Li & Hehuan Ran & Xudong Li & Qiang Fu, 2017. "Breakdown Voltage and Its Influencing Factors of Thermally Aged Oil-Impregnated Paper at Pulsating DC Voltage," Energies, MDPI, vol. 10(9), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Gao & Rui Yu & Guangcai Hu & Cheng Liu & Xin Zhuang & Peng Zhou, 2019. "Development Processes of Surface Trucking and Partial Discharge of Pressboards Immersed in Mineral Oil: Effect of Tip Curvatures," Energies, MDPI, vol. 12(3), pages 1-14, February.
    2. Qingguo Chen & Jinfeng Zhang & Minghe Chi & Peng Tan & Wenxin Sun, 2018. "Effect of Temperature on Space Charge Distribution of Oil–Paper Insulation under DC and Polarity Reversal Voltage," Energies, MDPI, vol. 11(9), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youhong Sun & Shichang Liu & Qiang Li & Xiaoshu Lü, 2022. "Experimental Study on the Factors of the Oil Shale Thermal Breakdown in High-Voltage Power Frequency Electric Heating Technology," Energies, MDPI, vol. 15(19), pages 1-12, September.
    2. Jacek Fal & Omid Mahian & Gaweł Żyła, 2018. "Nanofluids in the Service of High Voltage Transformers: Breakdown Properties of Transformer Oils with Nanoparticles, a Review," Energies, MDPI, vol. 11(11), pages 1-46, October.
    3. Karatas, Mehmet & Bicen, Yunus, 2022. "Nanoparticles for next-generation transformer insulating fluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1319-:d:148312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.