IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1308-d148102.html
   My bibliography  Save this article

Hybrid Coupled Multifracture and Multicontinuum Models for Shale Gas Simulation by Use of Semi-Analytical Approach

Author

Listed:
  • Maojun Cao

    (School of Computer & Information Technology, Northeast Petroleum University, Daqing 163318, China
    Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China)

  • Yu Dai

    (PetroChina Southwest Oil & Gasfield Company, Chengdu 610500, China)

  • Ling Zhao

    (School of Computer & Information Technology, Northeast Petroleum University, Daqing 163318, China)

  • Yuele Jia

    (Computer Science School, Southwest Petroleum University, Chengdu 610500, China)

  • Yueru Jia

    (Sinopec Zhongyuan Gas Corp. Ltd., Sinopec Corp, Puyang 457000, China)

Abstract

Combining the advantages of multicontinuum and multifracture representations provides an easy-to-use tool to adequately capture the characteristic of the multiscaled fracture system in shale gas reservoir. A hybrid model is established on the basis of simplified conceptual productivity assumption, where the matrix volume is divided into two sub-domains (triple-porosity model and dual-depletion flowing model) and the fracture volume is represented by discrete finite conductivity fracture. In addition, the mechanisms of instant desorption, viscous flow and dual-depletion in matrix are taken into account. The rate transient responses are then obtained by use of semi-analytical approach. Based on the model, type curves are plotted and verified by comparing with alternative reliable methods. Different flow regimes in shale gas reservoirs can be identified and detected. The Generalized Likelihood Uncertainty Estimation methodology, based on probabilistic aggregation theory, is employed to integrating those two productivity models together such that the production can be predicted more accurately. A field example is applied to validate the applicability of this new model. Finally, it is concluded that the proposed model can predict the rate and cumulative rate more easily and practically.

Suggested Citation

  • Maojun Cao & Yu Dai & Ling Zhao & Yuele Jia & Yueru Jia, 2018. "Hybrid Coupled Multifracture and Multicontinuum Models for Shale Gas Simulation by Use of Semi-Analytical Approach," Energies, MDPI, vol. 11(5), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1308-:d:148102
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1308/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1308/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei Tan & Lihua Zuo & Binbin Wang, 2018. "Methods of Decline Curve Analysis for Shale Gas Reservoirs," Energies, MDPI, vol. 11(3), pages 1-18, March.
    2. Yuwei Li & Lihua Zuo & Wei Yu & Youguang Chen, 2018. "A Fully Three Dimensional Semianalytical Model for Shale Gas Reservoirs with Hydraulic Fractures," Energies, MDPI, vol. 11(2), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia Liu & Jianguo Wang & Chunfai Leung & Feng Gao, 2018. "A Fully Coupled Numerical Model for Microwave Heating Enhanced Shale Gas Recovery," Energies, MDPI, vol. 11(6), pages 1-28, June.
    2. Fengjiao Wang & Yikun Liu & Chaoyang Hu & Anqi Shen & Shuang Liang & Bo Cai, 2018. "A Simplified Physical Model Construction Method and Gas-Water Micro Scale Flow Simulation in Tight Sandstone Gas Reservoirs," Energies, MDPI, vol. 11(6), pages 1-16, June.
    3. Xuechen Li & Xinfang Ma & Fengchao Xiao & Fei Wang & Shicheng Zhang, 2020. "Application of Gated Recurrent Unit (GRU) Neural Network for Smart Batch Production Prediction," Energies, MDPI, vol. 13(22), pages 1-22, November.
    4. Jingnan Dong & Mian Chen & Yuwei Li & Shiyong Wang & Chao Zeng & Musharraf Zaman, 2019. "Experimental and Theoretical Study on Dynamic Hydraulic Fracture," Energies, MDPI, vol. 12(3), pages 1-22, January.
    5. Zhang, Xian-min & Chen, Bai-yan-yue & Zheng, Zhuang-zhuang & Feng, Qi-hong & Fan, Bin, 2023. "New methods of coalbed methane production analysis based on the generalized gamma distribution and field applications," Applied Energy, Elsevier, vol. 350(C).
    6. Prinisha Manda & Diakanua Bavon Nkazi, 2020. "The Evaluation and Sensitivity of Decline Curve Modelling," Energies, MDPI, vol. 13(11), pages 1-16, June.
    7. Louis Delannoy & Pierre-Yves Longaretti & David. J. Murphy & Emmanuel Prados, 2021. "Assessing Global Long-Term EROI of Gas: A Net-Energy Perspective on the Energy Transition," Energies, MDPI, vol. 14(16), pages 1-16, August.
    8. Na Wei & Wantong Sun & Yingfeng Meng & Jinzhou Zhao & Bjørn Kvamme & Shouwei Zhou & Liehui Zhang & Qingping Li & Yao Zhang & Lin Jiang & Haitao Li & Jun Pei, 2020. "Hydrate Formation and Decomposition Regularities in Offshore Gas Reservoir Production Pipelines," Energies, MDPI, vol. 13(1), pages 1-22, January.
    9. Han Cao & Tianyi Wang & Ting Bao & Pinghe Sun & Zheng Zhang & Jingjing Wu, 2018. "Effective Exploitation Potential of Shale Gas from Lower Cambrian Niutitang Formation, Northwestern Hunan, China," Energies, MDPI, vol. 11(12), pages 1-18, December.
    10. Suran Wang & Linsong Cheng & Yongchao Xue & Shijun Huang & Yonghui Wu & Pin Jia & Zheng Sun, 2018. "A Semi-Analytical Method for Simulating Two-Phase Flow Performance of Horizontal Volatile Oil Wells in Fractured Carbonate Reservoirs," Energies, MDPI, vol. 11(10), pages 1-21, October.
    11. Catalin Popescu & Sorin Alexandru Gheorghiu, 2021. "Economic Analysis and Generic Algorithm for Optimizing the Investments Decision-Making Process in Oil Field Development," Energies, MDPI, vol. 14(19), pages 1-24, September.
    12. Wardana Saputra & Wissem Kirati & Tadeusz Patzek, 2020. "Physical Scaling of Oil Production Rates and Ultimate Recovery from All Horizontal Wells in the Bakken Shale," Energies, MDPI, vol. 13(8), pages 1-29, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1308-:d:148102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.