IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1228-d145760.html
   My bibliography  Save this article

Investigation of Flow and Heat Transfer Characteristics in Fractured Granite

Author

Listed:
  • Jin Luo

    (Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China
    Geo-Center of Northern Bavaria, University of Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
    Department of Civil and Environmental Engineering, Unversity of California, Berkeley, CA 94706, USA)

  • Yumeng Qi

    (School of Civil Engineering, Tianjin University, Tianjin 300072, China)

  • Qiang Zhao

    (Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China)

  • Long Tan

    (Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China)

  • Wei Xiang

    (Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China)

  • Joachim Rohn

    (Geo-Center of Northern Bavaria, University of Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany)

Abstract

Hydraulic and heat transfer properties of artificially fractured rocks are the key issues for efficient exploitation of geothermal energy in fractured reservoirs and it has been studied by many previous researchers. However, the fluid temperature evolution along the flow path and rock temperature changes was rarely considered. This study investigated flow and heat transfer characteristics of two sets of fractured granite samples each with a single fissure. The samples were collected from a geothermal reservoir of Gonghe basin in Qinghai province in China. The results show that the larger area ratio, the higher hydraulic conductivity exhibited. Hydraulic conductivity of fractured rock masses is positively proportional to injection pressure, but inversely proportional with both confining pressure and temperature. In order to analyze heat transfer during the flow process, temperature distribution along the flow path in a fracture was monitored. The temperature of the fluid was determined to increase with distance from the flowing inlet. Increasing the temperature of the rock or decreasing the injection pressure will raise the temperature at the same location. Furthermore, in order to understand the heat transfer in rock mass, temperature distribution was observed by using an infrared thermal camera. Finally, the energy exchange efficiency during the flowing process was examined. The energy exchange rate increases continuously with the rock temperature, with an effective stress ratio of 1:2.

Suggested Citation

  • Jin Luo & Yumeng Qi & Qiang Zhao & Long Tan & Wei Xiang & Joachim Rohn, 2018. "Investigation of Flow and Heat Transfer Characteristics in Fractured Granite," Energies, MDPI, vol. 11(5), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1228-:d:145760
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1228/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1228/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Zheng-Wei & Feng, Xia-Ting & Zhang, Yan-Jun & Zhang, Chi & Xu, Tian-Fu & Wang, Yun-Sen, 2017. "Experimental research on the convection heat transfer characteristics of distilled water in manmade smooth and rough rock fractures," Energy, Elsevier, vol. 133(C), pages 206-218.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Renhui & Rong, Guan & Tan, Jie & Phoon, Kok-Kwang & Quan, Junsong, 2022. "Numerical evaluation of heat extraction performance in enhanced geothermal system considering rough-walled fractures," Renewable Energy, Elsevier, vol. 188(C), pages 524-544.
    2. Heinze, Thomas, 2021. "Constraining the heat transfer coefficient of rock fractures," Renewable Energy, Elsevier, vol. 177(C), pages 433-447.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heinze, Thomas, 2021. "Constraining the heat transfer coefficient of rock fractures," Renewable Energy, Elsevier, vol. 177(C), pages 433-447.
    2. He, Renhui & Rong, Guan & Tan, Jie & Phoon, Kok-Kwang & Quan, Junsong, 2022. "Numerical evaluation of heat extraction performance in enhanced geothermal system considering rough-walled fractures," Renewable Energy, Elsevier, vol. 188(C), pages 524-544.
    3. Ma, Yueqiang & Gan, Quan & Zhang, Yanjun & Yuan, Xuebing, 2022. "Experimental study of heat transfer between fluid flowing through fracture surface with tortuous seepage path," Renewable Energy, Elsevier, vol. 188(C), pages 81-95.
    4. Feng Xiong & Chu Zhu & Qinghui Jiang, 2021. "A Novel Procedure for Coupled Simulation of Thermal and Fluid Flow Models for Rough-Walled Rock Fractures," Energies, MDPI, vol. 14(4), pages 1-17, February.
    5. Ma, Yueqiang & Zhang, Yanjun & Hu, Zhongjun & Yu, Ziwang & Zhou, Ling & Huang, Yibin, 2020. "Numerical investigation of heat transfer performance of water flowing through a reservoir with two intersecting fractures," Renewable Energy, Elsevier, vol. 153(C), pages 93-107.
    6. Zhang, Wei & Qu, Zhanqing & Guo, Tiankui & Wang, Zhiyuan, 2019. "Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress," Renewable Energy, Elsevier, vol. 143(C), pages 855-871.
    7. Zhang, Wei & Guo, Tian-kui & Qu, Zhan-qing & Wang, Zhiyuan, 2019. "Research of fracture initiation and propagation in HDR fracturing under thermal stress from meso-damage perspective," Energy, Elsevier, vol. 178(C), pages 508-521.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1228-:d:145760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.