IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p829-d139432.html
   My bibliography  Save this article

Detection of Tectonically Deformed Coal Using Model-Based Joint Inversion of Multi-Component Seismic Data

Author

Listed:
  • Jun Lu

    (Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, Ministry of Education, China University of Geosciences, Beijing 100083, China)

  • Yun Wang

    (School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China)

  • Jingyi Chen

    (Department of Geosciences, The University of Tulsa, Tulsa, OK 74104, USA)

Abstract

Tectonically-deformed coal (TDC) is a potential source of threats to coal-mining safety. Finding out the development and distribution of TDCs is a difficult task in coalfield seismic explorations. Based on the previous investigations, the P- to S-wave velocity ratio ( α / β ) is a stable parameter for the identification of TDCs and most TDCs have α / β values of less than 1.7. Here, a TDC detection method using a model-based joint inversion of the multi-component seismic data is proposed. Following the least square theories, the amplitude variation with offset gathers of the PP- and PS-waves are jointly inverted into the corresponding α / β values. The prior models generated from the P- and S-wave velocity and density logs are employed in the joint inversion to enhance the inversed models. Model test results show that the model-based inversion is of high anti-noise ability and has a good recognition ability of TDCs. The proposed method is applied to a work area of the Guqiao mine in China. The TDCs developed in coal seam 13-1 are effectively identified according to their inverted α / β values of less than 1.7. The detection result is verified by the well and tunnel excavation information.

Suggested Citation

  • Jun Lu & Yun Wang & Jingyi Chen, 2018. "Detection of Tectonically Deformed Coal Using Model-Based Joint Inversion of Multi-Component Seismic Data," Energies, MDPI, vol. 11(4), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:829-:d:139432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/829/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/829/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haifeng Wang & Yuanping Cheng & Liang Yuan, 2013. "Gas outburst disasters and the mining technology of key protective seam in coal seam group in the Huainan coalfield," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 763-782, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Sun & Suping Peng & Dengke He, 2018. "A Novel Static Correction Approach for Eliminating the Effect of Geophones—A Case Study in Coal Reservoirs, Ordos Basin, China," Energies, MDPI, vol. 11(12), pages 1-12, November.
    2. Qiang Chen & Jin Jing & Jun Liu & Jianhui Long & Sheng Zhang, 2019. "Productivity Evaluation of Coalbed Methane Well with Geophysical Logging-Derived Tectonically Deformed Coal," Energies, MDPI, vol. 12(18), pages 1-15, September.
    3. Xin Wang & Tongjun Chen & Hui Xu, 2020. "Thickness Distribution Prediction for Tectonically Deformed Coal with a Deep Belief Network: A Case Study," Energies, MDPI, vol. 13(5), pages 1-14, March.
    4. Xiong Song & Tongjun Chen & Dengliang Zhang, 2023. "The Acoustic Characteristics of Tectonically Deformed Coal in Huaibei Coalfield," Energies, MDPI, vol. 16(13), pages 1-15, July.
    5. Anmin Wang & Daiyong Cao & Yingchun Wei & Zhifei Liu, 2020. "Macromolecular Structure Controlling Micro Mechanical Properties of Vitrinite and Inertinite in Tectonically Deformed Coals—A Case Study in Fengfeng Coal Mine of Taihangshan Fault Zone (North China)," Energies, MDPI, vol. 13(24), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheng-Jie Fang & Bing Liang & Wei-Ji Sun & Zhan-Shan Shi & Jian-Feng Hao & Bei-Fang Wang & Xiao-Yong Zhang, 2022. "Study on Stress Evolution Law of Overburden under Repeated Mining in Long-Distance Double Upper Protective Layer," Energies, MDPI, vol. 15(12), pages 1-24, June.
    2. Zuxun Zhang & Hongtu Wang & Bozhi Deng & Minghui Li & Dongming Zhang, 2018. "Field Investigation of Hydraulic Fracturing in Coal Seams and Its Enhancement for Methane Extraction in the Southeast Sichuan Basin, China," Energies, MDPI, vol. 11(12), pages 1-15, December.
    3. Rui Gao & Bin Yu & Hongchun Xia & Hongfei Duan, 2017. "Reduction of Stress Acting on a Thick, Deep Coal Seam by Protective-Seam Mining," Energies, MDPI, vol. 10(8), pages 1-15, August.
    4. Guo, Yong & Yang, Fuqiang, 2023. "Mining safety research in China: Understanding safety research trends and future demands for sustainable mining industry," Resources Policy, Elsevier, vol. 83(C).
    5. Fangtian Wang & Cun Zhang & Ningning Liang, 2017. "Gas Permeability Evolution Mechanism and Comprehensive Gas Drainage Technology for Thin Coal Seam Mining," Energies, MDPI, vol. 10(9), pages 1-18, September.
    6. Lifeng Wu & Sifeng Liu & Ding Chen & Ligen Yao & Wei Cui, 2014. "Using gray model with fractional order accumulation to predict gas emission," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 2231-2236, April.
    7. Zi-shan Gao & Chuan-jie Zhu & Xi-miao Lu & Jie Ren, 2020. "Prevention and control of abnormal gas emission caused by accidental discharge of floor fissure water: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 713-733, January.
    8. Xu, Chao & Ma, Sibo & Wang, Kai & Yang, Gang & Zhou, Xin & Zhou, Aitao & Shu, Longyong, 2023. "Stress and permeability evolution of high-gassy coal seams for repeated mining," Energy, Elsevier, vol. 284(C).
    9. Zhanshan Shi & Donglin Ye & Bing Qin & Jianfeng Hao & Weiji Sun & Shengjie Fang, 2022. "Mining Height Effect and Application of Upper Protected Layer Mining Pressure Relief," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    10. Xinshan Peng & Lingling Qi & Zhaofeng Wang & Xiaoqing Zhou & Chunlei Hua, 2022. "Study on Overburden Movement Deformation and Roof Breakage Law of Under-Protective Steeply Inclined Coal Seam Mining," Sustainability, MDPI, vol. 14(16), pages 1-13, August.
    11. Siwen Zheng & Liang Wang & Dapeng Chen & Yuanyuan Liu & Changbao Jiang, 2024. "Main control factors of coalbed methane occurrence differences in adjacent coal seams - a case study of Luling coal mine, Huaibei Coalfield, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 11183-11207, September.
    12. Yanjiang Chai & Linming Dou & Jiang He & Xiaotao Ma & Fangzhou Lu & Hu He, 2024. "Limitations of Upper Protective Layers as Pressure Relief Measures for Extra-Thick Coal Seam Mining: Insights from a Case Study," Energies, MDPI, vol. 17(6), pages 1-20, March.
    13. Feng Zhang & Jinshan Zhang, 2022. "Research on Joint Protection Layers and Gas Prevention Technology in Outburst Coal Seams," Sustainability, MDPI, vol. 14(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:829-:d:139432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.