IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p501-d133559.html
   My bibliography  Save this article

Reduction of Electricity Prices Using the Train to Grid (T2G) System in Urban Railway

Author

Listed:
  • Hyo-Sang Go

    (Korea Testing Laboratory, Seoul 100744, Korea
    Korea Railroad Research Institute, Uiwang 160161, Korea
    The research reported in this study was conducted while Hyo-Sang Go was affiliated with Korea Railroad Research Institute.)

  • In-Ho Cho

    (Korea Railroad Research Institute, Uiwang 160161, Korea)

  • Gil-Dong Kim

    (Korea Railroad Research Institute, Uiwang 160161, Korea)

  • Chul-Hwan Kim

    (College of Information and Communication Engineering, Sungkyunkwan University; Seoul 100744, Korea)

Abstract

Smart transportation technologies are being rapidly developed for enhancing the smart grid establishment. Such technologies are mostly focused on electric vehicles. However, the electric railroad has advantages in various aspects such as facility construction and utilization over an electric vehicle. Therefore, in this paper, we introduce the train-to-grid system using the electric railroads for the smart grid, and propose a reduction method for the electricity prices. The proposed method obtains actual data from the currently operating railroad systems. Furthermore, the number of trains for charging and discharging batteries is decided by using the time-of-use price and the number of railroad operations. The electricity prices are then determined by the energy consumption calculated using the number of trains used for charging and discharging and the capacity of the energy storage system in the trains. The proposed method is simulated using real data, and its superiority is verified by comparing its electric prices with the conventional electricity prices.

Suggested Citation

  • Hyo-Sang Go & In-Ho Cho & Gil-Dong Kim & Chul-Hwan Kim, 2018. "Reduction of Electricity Prices Using the Train to Grid (T2G) System in Urban Railway," Energies, MDPI, vol. 11(3), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:501-:d:133559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/501/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/501/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tan, Kang Miao & Ramachandaramurthy, Vigna K. & Yong, Jia Ying, 2016. "Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 720-732.
    2. Rahman, Imran & Vasant, Pandian M. & Singh, Balbir Singh Mahinder & Abdullah-Al-Wadud, M. & Adnan, Nadia, 2016. "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1039-1047.
    3. Hyeongig Kim & Jae-Haeng Heo & Jong-Young Park & Yong Tae Yoon, 2017. "Impact of Battery Energy Storage System Operation Strategy on Power System: An Urban Railway Load Case under a Time-of-Use Tariff," Energies, MDPI, vol. 10(1), pages 1-15, January.
    4. Peng, Chao & Zou, Jianxiao & Lian, Lian & Li, Liying, 2017. "An optimal dispatching strategy for V2G aggregator participating in supplementary frequency regulation considering EV driving demand and aggregator’s benefits," Applied Energy, Elsevier, vol. 190(C), pages 591-599.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    2. Biresselioglu, Mehmet Efe & Demirbag Kaplan, Melike & Yilmaz, Barbara Katharina, 2018. "Electric mobility in Europe: A comprehensive review of motivators and barriers in decision making processes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 1-13.
    3. Adil Amin & Wajahat Ullah Khan Tareen & Muhammad Usman & Haider Ali & Inam Bari & Ben Horan & Saad Mekhilef & Muhammad Asif & Saeed Ahmed & Anzar Mahmood, 2020. "A Review of Optimal Charging Strategy for Electric Vehicles under Dynamic Pricing Schemes in the Distribution Charging Network," Sustainability, MDPI, vol. 12(23), pages 1-28, December.
    4. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    5. Shaukat, N. & Khan, B. & Ali, S.M. & Mehmood, C.A. & Khan, J. & Farid, U. & Majid, M. & Anwar, S.M. & Jawad, M. & Ullah, Z., 2018. "A survey on electric vehicle transportation within smart grid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1329-1349.
    6. Stefano Rinaldi & Marco Pasetti & Emiliano Sisinni & Federico Bonafini & Paolo Ferrari & Mattia Rizzi & Alessandra Flammini, 2018. "On the Mobile Communication Requirements for the Demand-Side Management of Electric Vehicles," Energies, MDPI, vol. 11(5), pages 1-27, May.
    7. Marco Pasetti & Stefano Rinaldi & Alessandra Flammini & Michela Longo & Federica Foiadelli, 2019. "Assessment of Electric Vehicle Charging Costs in Presence of Distributed Photovoltaic Generation and Variable Electricity Tariffs," Energies, MDPI, vol. 12(3), pages 1-20, February.
    8. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    9. Saleh Aghajan-Eshkevari & Sasan Azad & Morteza Nazari-Heris & Mohammad Taghi Ameli & Somayeh Asadi, 2022. "Charging and Discharging of Electric Vehicles in Power Systems: An Updated and Detailed Review of Methods, Control Structures, Objectives, and Optimization Methodologies," Sustainability, MDPI, vol. 14(4), pages 1-31, February.
    10. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    11. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    12. Nunes, Pedro & Figueiredo, Raquel & Brito, Miguel C., 2016. "The use of parking lots to solar-charge electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 679-693.
    13. Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.
    14. Triviño-Cabrera, Alicia & Aguado, José A. & Torre, Sebastián de la, 2019. "Joint routing and scheduling for electric vehicles in smart grids with V2G," Energy, Elsevier, vol. 175(C), pages 113-122.
    15. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    16. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    17. Lucio Ciabattoni & Stefano Cardarelli & Marialaura Di Somma & Giorgio Graditi & Gabriele Comodi, 2021. "A Novel Open-Source Simulator Of Electric Vehicles in a Demand-Side Management Scenario," Energies, MDPI, vol. 14(6), pages 1-16, March.
    18. Raka Jovanovic & Islam Safak Bayram & Sertac Bayhan & Stefan Voß, 2021. "A GRASP Approach for Solving Large-Scale Electric Bus Scheduling Problems," Energies, MDPI, vol. 14(20), pages 1-23, October.
    19. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    20. Rahman, Imran & Vasant, Pandian M. & Singh, Balbir Singh Mahinder & Abdullah-Al-Wadud, M. & Adnan, Nadia, 2016. "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1039-1047.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:501-:d:133559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.