IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p77-d124967.html
   My bibliography  Save this article

Anisotropy in Thermal Recovery of Oil Shale—Part 1: Thermal Conductivity, Wave Velocity and Crack Propagation

Author

Listed:
  • Guoying Wang

    (Institute of Mining Technology, Taiyuan University of Technology, Taiyuan 030024, China)

  • Dong Yang

    (Institute of Mining Technology, Taiyuan University of Technology, Taiyuan 030024, China)

  • Zhiqin Kang

    (Institute of Mining Technology, Taiyuan University of Technology, Taiyuan 030024, China)

  • Jing Zhao

    (Institute of Mining Technology, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

In this paper, the evolution of thermal conductivity, wave velocity and microscopic crack propagation both parallel and perpendicular to the bedding plane in anisotropic rock oil shale were studied at temperatures ranging from room temperature to 600 °C. The results show that the thermal conductivity of the perpendicular to bedding direction (K PER ) (PER: perpendicular to beeding direction), wave velocity of perpendicular to bedding diretion (V PER ), thermal conduction coefficient of parallel to beeding direction (K PAR ) and wave velocity of parallel to beeding direction (V PAR ) (PAR: parallel to bedding direction) decreased with the increase in temperature, but the rates are different. K PER and V PER linearly decreased with increasing temperature from room temperature to 350 °C, with an obvious decrease at 400 °C corresponding to a large number of cracks generated along the bedding direction. K PER , V PER , K PAR and V PAR generally maintained fixed values from 500 °C to 600 °C. 400 °C has been identified as the threshold temperature for anisotropic evolution of oil shale thermal physics. In addition, the relationship between the thermal conductivity and wave velocity based on the anisotropy of oil shale was fitted using linear regression. The research in this paper can provide reference for the efficient thermal recovery of oil shale, thermal recovery of heavy oil reservoirs and the thermodynamic engineering in other sedimentary rocks.

Suggested Citation

  • Guoying Wang & Dong Yang & Zhiqin Kang & Jing Zhao, 2018. "Anisotropy in Thermal Recovery of Oil Shale—Part 1: Thermal Conductivity, Wave Velocity and Crack Propagation," Energies, MDPI, vol. 11(1), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:77-:d:124967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/77/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/77/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shangli Liu & Haifeng Gai & Peng Cheng, 2023. "Technical Scheme and Application Prospects of Oil Shale In Situ Conversion: A Review of Current Status," Energies, MDPI, vol. 16(11), pages 1-22, May.
    2. Wang, Guoying & Liu, Shaowei & Yang, Dong & Fu, Mengxiong, 2022. "Numerical study on the in-situ pyrolysis process of steeply dipping oil shale deposits by injecting superheated water steam: A case study on Jimsar oil shale in Xinjiang, China," Energy, Elsevier, vol. 239(PC).
    3. Juan Jin & Weidong Jiang & Jiandong Liu & Junfeng Shi & Xiaowen Zhang & Wei Cheng & Ziniu Yu & Weixi Chen & Tingfu Ye, 2023. "Numerical Analysis of In Situ Conversion Process of Oil Shale Formation Based on Thermo-Hydro-Chemical Coupled Modelling," Energies, MDPI, vol. 16(5), pages 1-17, February.
    4. Ge, Zhaolong & Zhang, Hongwei & Zhou, Zhe & Cao, Shirong & Zhang, Di & Liu, Xiangjie & Tian, Chao, 2023. "Experimental study on the characteristics and mechanism of high-pressure water jet fracturing in high-temperature hard rocks," Energy, Elsevier, vol. 270(C).
    5. Juan Jin & Jiandong Liu & Weidong Jiang & Wei Cheng & Xiaowen Zhang, 2022. "Evolution of the Anisotropic Thermal Conductivity of Oil Shale with Temperature and Its Relationship with Anisotropic Pore Structure Evolution," Energies, MDPI, vol. 15(21), pages 1-16, October.
    6. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:77-:d:124967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.