IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p126-d125491.html
   My bibliography  Save this article

A Novel Power Flow Algorithm for Traction Power Supply Systems Based on the Thévenin Equivalent

Author

Listed:
  • Junqi Zhang

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Mingli Wu

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Qiujiang Liu

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

Abstract

With the rapid development of high-speed and heavy-haul railways throughout China, modern large power locomotives and electric multiple units (EMUs) have been applied in main railway lines. The high power requirements have brought about the problem of insufficient power supply capacity (PSC) of traction power supply systems (TPSSs). Thus, a convenient method of PSC assessment is meaningful and urgently needed. In this paper, a novel algorithm is proposed based on the Thévenin equivalent in order to calculate the PSC. In this algorithm, node voltage equations are converted into port characteristic equations, and the Newton-Raphson method is exploited to solve them. Based on this algorithm, the PSC of a typical high-speed railway is calculated through the repeated power flow (RPF). Subsequently, the effects of an optimized organization of train operations are analyzed. Compared to conventional algorithms, the proposed one has the advantages of fast convergence and an easy approach to multiple solutions and PV curves, which show vivid and visual information to TPSS designers and operators. A numerical analysis and case studies validate the effectiveness and feasibility of the proposed method, which can help to optimize the organization of train operations and design lines and enhance the reliability and safety of TPSSs.

Suggested Citation

  • Junqi Zhang & Mingli Wu & Qiujiang Liu, 2018. "A Novel Power Flow Algorithm for Traction Power Supply Systems Based on the Thévenin Equivalent," Energies, MDPI, vol. 11(1), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:126-:d:125491
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/126/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/126/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoqiong He & Haijun Ren & Jingying Lin & Pengcheng Han & Yi Wang & Xu Peng & Zeliang Shu, 2019. "Power Flow Analysis of the Advanced Co-Phase Traction Power Supply System," Energies, MDPI, vol. 12(4), pages 1-20, February.
    2. Zhongbei Tian & Ning Zhao & Stuart Hillmansen & Shuai Su & Chenglin Wen, 2020. "Traction Power Substation Load Analysis with Various Train Operating Styles and Substation Fault Modes," Energies, MDPI, vol. 13(11), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:126-:d:125491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.