IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3412-d188206.html
   My bibliography  Save this article

Load Frequency Control Using Demand Response and Storage Battery by Considering Renewable Energy Sources

Author

Listed:
  • Lei Liu

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Okinawa 903-0123, Japan)

  • Hidehito Matayoshi

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Okinawa 903-0123, Japan)

  • Mohammed Elsayed Lotfy

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Okinawa 903-0123, Japan
    Department of Electrical Power and Machines, Zagazig University, Zagazig 44519, Egypt)

  • Manoj Datta

    (Electrical and Computer Engineering School of Engineering, RMIT University, Melbourne 3000, Victoria, Australia)

  • Tomonobu Senjyu

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Okinawa 903-0123, Japan)

Abstract

Renewable energy sources (RESs), as clean, abundant, and inexhaustible source of energy, have developed quickly in recent years and played more and more important roles around the world. However, RESs also have some disadvantages, such as the weakness of stability, and by the the estimated increase of utilizing RESs in the near future, researchers began to give more attention to these issues. This paper presents a novel output power fluctuate compensation scheme in the small-scale power system, verifying the effect of output power control using storage battery, demand response and RESs. Four scenarios are considered in the proposed approach: real-time pricing demand response employment, RESs output control use and both of demand response and RESs output control implementation. The performance of the proposed control technique is investigated using the real 10-bus power system model of Okinawa island, Japan. Moreover, the system stability is checked using the pole-zero maps for all of the control loops associated with the proposed scheme. The robustness and effectiveness of the proposed method was verified by simulation using Matlab ® /Simulink ® .

Suggested Citation

  • Lei Liu & Hidehito Matayoshi & Mohammed Elsayed Lotfy & Manoj Datta & Tomonobu Senjyu, 2018. "Load Frequency Control Using Demand Response and Storage Battery by Considering Renewable Energy Sources," Energies, MDPI, vol. 11(12), pages 1-40, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3412-:d:188206
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3412/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3412/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    2. Mohammed Elsayed Lotfy & Tomonobu Senjyu & Mohammed Abdel-Fattah Farahat & Amal Farouq Abdel-Gawad & Atsuhi Yona, 2017. "A Frequency Control Approach for Hybrid Power System Using Multi-Objective Optimization," Energies, MDPI, vol. 10(1), pages 1-22, January.
    3. Dehghanpour, Kaveh & Afsharnia, Saeed, 2015. "Electrical demand side contribution to frequency control in power systems: a review on technical aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1267-1276.
    4. Mehdi Tavakkoli & Jafar Adabi & Sasan Zabihi & Radu Godina & Edris Pouresmaeil, 2018. "Reserve Allocation of Photovoltaic Systems to Improve Frequency Stability in Hybrid Power Systems," Energies, MDPI, vol. 11(10), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tanima Bal & Saheli Ray & Nidul Sinha & Ramesh Devarapalli & Łukasz Knypiński, 2023. "Integrating Demand Response for Enhanced Load Frequency Control in Micro-Grids with Heating, Ventilation and Air-Conditioning Systems," Energies, MDPI, vol. 16(15), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malik, Anam & Ravishankar, Jayashri, 2018. "A hybrid control approach for regulating frequency through demand response," Applied Energy, Elsevier, vol. 210(C), pages 1347-1362.
    2. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
    3. Villa-Arrieta, Manuel & Sumper, Andreas, 2018. "A model for an economic evaluation of energy systems using TRNSYS," Applied Energy, Elsevier, vol. 215(C), pages 765-777.
    4. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    5. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    6. Haidar, Ahmed M.A. & Muttaqi, Kashem & Sutanto, Danny, 2015. "Smart Grid and its future perspectives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1375-1389.
    7. Xu, Xiaojing & Chen, Chien-fei, 2019. "Energy efficiency and energy justice for U.S. low-income households: An analysis of multifaceted challenges and potential," Energy Policy, Elsevier, vol. 128(C), pages 763-774.
    8. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    9. Tang, Daogui & Fang, Yi-Ping & Zio, Enrico, 2023. "Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    10. Baloglu, Ulas Baran & Demir, Yakup, 2018. "Lightweight privacy-preserving data aggregation scheme for smart grid metering infrastructure protection," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 16-24.
    11. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    12. Sadeghianpourhamami, N. & Demeester, T. & Benoit, D.F. & Strobbe, M. & Develder, C., 2016. "Modeling and analysis of residential flexibility: Timing of white good usage," Applied Energy, Elsevier, vol. 179(C), pages 790-805.
    13. Hu, Rongchun & Zhang, Dongxu & Gu, Xudong, 2022. "Reliability analysis of a class of stochastically excited nonlinear Markovian jump systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    14. Ponce, Pedro & Polasko, Kenneth & Molina, Arturo, 2016. "End user perceptions toward smart grid technology: Acceptance, adoption, risks, and trust," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 587-598.
    15. Anthony McLean & Harriet Bulkeley & Mike Crang, 2016. "Negotiating the urban smart grid: Socio-technical experimentation in the city of Austin," Urban Studies, Urban Studies Journal Limited, vol. 53(15), pages 3246-3263, November.
    16. Yang, Chao & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Chen, Zhe & Wen, Jinyu & He, Haibo, 2019. "Dynamic event-triggered robust secondary frequency control for islanded AC microgrid," Applied Energy, Elsevier, vol. 242(C), pages 821-836.
    17. Tiejiang Yuan & Qingxi Duan & Xiangping Chen & Xufeng Yuan & Wenping Cao & Juan Hu & Quanmin Zhu, 2017. "Coordinated Control of a Wind-Methanol-Fuel Cell System with Hydrogen Storage," Energies, MDPI, vol. 10(12), pages 1-21, December.
    18. Wang, Ge & Zhang, Qi & Li, Hailong & McLellan, Benjamin C. & Chen, Siyuan & Li, Yan & Tian, Yulu, 2017. "Study on the promotion impact of demand response on distributed PV penetration by using non-cooperative game theoretical analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1869-1878.
    19. Asaad, Mohammad & Ahmad, Furkan & Alam, Mohammad Saad & Sarfraz, Mohammad, 2021. "Smart grid and Indian experience: A review," Resources Policy, Elsevier, vol. 74(C).
    20. Inna Čábelková & Wadim Strielkowski & Irina Firsova & Marina Korovushkina, 2020. "Public Acceptance of Renewable Energy Sources: a Case Study from the Czech Republic," Energies, MDPI, vol. 13(7), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3412-:d:188206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.